Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 35(2): 132-139, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38345213

RESUMEN

Targeted drug delivery approaches that selectively and preferentially deliver therapeutic agents to specific tissues are of great interest for safer and more effective pharmaceutical treatments. We investigated whether cathepsin B cleavage of a valine-citrulline [VC(S)]-containing linker is required for the release of monomethyl auristatin E (MMAE) from albumin-drug conjugates. In this study, we used an engineered version of human serum albumin, Veltis High Binder II (HBII), which has enhanced binding to the neonatal Fc (fragment crystallizable) receptor (FcRn) to improve drug release upon binding and FcRn-mediated recycling. The linker-payload was conjugated to cysteine 34 of albumin using a carbonylacrylic (caa) reagent which produced homogeneous and plasma stable conjugates that retained FcRn binding. Two caa-linker-MMAE reagents were synthesized─one with a cleavable [VC(S)] linker and one with a noncleavable [VC(R)] linker─to question whether protease-mediated cleavage is needed for MMAE release. Our findings demonstrate that cathepsin B is required to achieve efficient and selective antitumor activity. The conjugates equipped with the cleavable [VC(S)] linker had potent antitumor activity in vivo facilitated by the release of free MMAE upon FcRn binding and internalization. In addition to the pronounced antitumor activity of the albumin conjugates in vivo, we also demonstrated their preferable tumor biodistribution and biocompatibility with no associated toxicity or side effects. These results suggest that the use of engineered albumins with high FcRn binding combined with protease cleavable linkers is an efficient strategy to target delivery of drugs to solid tumors.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Recién Nacido , Albúminas/metabolismo , Catepsina B/metabolismo , Línea Celular Tumoral , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/metabolismo , Neoplasias/tratamiento farmacológico , Péptido Hidrolasas , Distribución Tisular
2.
Sci Adv ; 9(2): eabq3151, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638180

RESUMEN

Fundamental knowledge of the physical and chemical properties of biomolecules is key to understanding molecular processes in health and disease. Bulk and single-molecule analytical methods provide rich information about biomolecules but often require high concentrations and sample preparation away from physiologically relevant conditions. Here, we present the development and application of a lab-on-a-chip spray approach that combines rapid sample preparation, mixing, and deposition to integrate with a range of nanoanalytical methods in chemistry and biology, providing enhanced spectroscopic sensitivity and single-molecule spatial resolution. We demonstrate that this method enables multidimensional study of heterogeneous biomolecular systems over multiple length scales by nanoscopy and vibrational spectroscopy. We then illustrate the capabilities of this platform by capturing and analyzing the structural conformations of transient oligomeric species formed at the early stages of the self-assembly of α-synuclein, which are associated with the onset of Parkinson's disease.

3.
Sci Rep ; 12(1): 18318, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351930

RESUMEN

The benefits of continuous glucose monitoring (CGM) in diabetes management are extensively documented. Yet, the broader adoption of CGM systems is limited by their cost and invasiveness. Current CGM devices, requiring implantation or the use of hypodermic needles, fail to offer a convenient solution. We have demonstrated that magnetohydrodynamics (MHD) is effective at extracting dermal interstitial fluid (ISF) containing glucose, without the use of needles. Here we present the first study of ISF sampling with MHD for glucose monitoring in humans. We conducted 10 glucose tolerance tests on 5 healthy volunteers and obtained a significant correlation between the concentration of glucose in ISF samples extracted with MHD and capillary blood glucose samples. Upon calibration and time lag removal, the data indicate a Mean Absolute Relative Difference (MARD) of 12.9% and Precision Absolute Relative Difference of 13.1%. In view of these results, we discuss the potential value and limitations of MHD in needle-free glucose monitoring.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1 , Humanos , Automonitorización de la Glucosa Sanguínea/métodos , Glucemia , Proyectos Piloto , Voluntarios Sanos , Glucosa
4.
Biosens Bioelectron ; 206: 114123, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35259608

RESUMEN

We integrated a magnetohydrodynamic fluid extractor with an amperometric glucose biosensor to develop a wearable device for non-invasive glucose monitoring. Reproducible fluid extraction through the skin and efficient transport of the extracted fluid to the biosensor surface are prerequisites for non-invasive glucose monitoring. We optimized the enzyme immobilization and the interface layer between the sensing device and the skin. The monitoring device was evaluated by extracting fluid through porcine skin followed by glucose detection at the biosensor. The biosensor featured a screen-printed layer of Prussian Blue that was coated with a layer containing glucose oxidase. Both physical entrapment of glucose oxidase in chitosan and tethering of glucose oxidase to electrospun nanofibers were evaluated. Binding of glucose oxidase to nanofibers under mild conditions provided a stable biosensor with analytical performance suitable for accurate detection of micromolar concentrations of glucose. Hydrogels of varying thickness (95-2000 µm) as well as a thin (30 µm) nanofibrous polycaprolactone mat were studied as an interface layer between the biosensor and the skin. The effect of mass transfer phenomena at the biosensor-skin interface on the analytical performance of the biosensor was evaluated. The sensing device detected glucose extracted through porcine skin with an apparent (overall) sensitivity of -0.8 mA/(M·cm2), compared to a sensitivity of -17 mA/(M·cm2) for measurement in solution. The amperometric response of the biosensor correlated with the glucose concentration in the fluid that had been extracted through porcine skin with the magnetohydrodynamic technique.


Asunto(s)
Técnicas Biosensibles , Glucosa Oxidasa , Glucemia , Automonitorización de la Glucosa Sanguínea , Enzimas Inmovilizadas , Líquido Extracelular , Glucosa
5.
J Am Chem Soc ; 143(40): 16401-16410, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34606279

RESUMEN

Biomimetics is a design principle within chemistry, biology, and engineering, but chemistry biomimetic approaches have been generally limited to emulating nature's chemical toolkit while emulation of nature's physical toolkit has remained largely unexplored. To begin to explore this, we designed biophysically mimetic microfluidic reactors with characteristic length scales and shear stresses observed within capillaries. We modeled the effect of shear with molecular dynamics studies and showed that this induces specific normally buried residues to become solvent accessible. We then showed using kinetics experiments that rates of reaction of these specific residues in fact increase in a shear-dependent fashion. We applied our results in the creation of a new microfluidic approach for the multidimensional study of cysteine biomarkers. Finally, we used our approach to establish dissociation of the therapeutic antibody trastuzumab in a reducing environment. Our results have implications for the efficacy of existing therapeutic antibodies in blood plasma as well as suggesting in general that biophysically mimetic chemistry is exploited in biology and should be explored as a research area.


Asunto(s)
Biomimética
6.
Bioconjug Chem ; 32(8): 1570-1575, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34232618

RESUMEN

5-(Alkynyl)dibenzothiophenium triflates are introduced as new reagents to prepare different protein conjugates through site-selective cysteine alkynylation. The protocol developed allows a highly efficient label of free cysteine-containing proteins with relevant biological roles, such as ubiquitin, the C2A domain of Synaptotagmin-I, or HER2 targeting nanobodies. An electrophilic bis-alkynylating reagent was also designed. The second alkynylating handle thus introduced in the desired protein enables access to protein-thiol, protein-peptide, and protein-protein conjugates, and even diubiquitin dimers can be prepared through this approach. The low excess of reagent needed, mild reaction conditions used, short reaction times, and stability of the S-C(alkyne) bonds at physiological conditions make this approach an interesting addition to the toolbox of classical, site-selective cysteine-conjugation methods.


Asunto(s)
Alquinos/química , Proteínas/química , Tiofenos/química , Alquinos/síntesis química , Animales , Técnicas de Química Sintética , Cisteína/síntesis química , Cisteína/química , Humanos , Indicadores y Reactivos , Mesilatos/síntesis química , Mesilatos/química , Modelos Moleculares , Proteínas/síntesis química , Compuestos de Sulfhidrilo/química , Tiofenos/síntesis química
7.
Sci Rep ; 11(1): 7609, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828144

RESUMEN

Out of 463 million people currently with diabetes, 232 million remain undiagnosed. Diabetes is a threat to human health, which could be mitigated via continuous self-monitoring of glucose. In addition to blood, interstitial fluid is considered to be a representative sample for glucose monitoring, which makes it highly attractive for wearable on-body sensing. However, new technologies are needed for efficient and noninvasive sampling of interstitial fluid through the skin. In this report, we introduce the use of Lorentz force and magnetohydrodynamics to noninvasively extract dermal interstitial fluid. Using porcine skin as an ex-vivo model, we demonstrate that the extraction rate of magnetohydrodynamics is superior to that of reverse iontophoresis. This work seeks to provide a safe, effective, and noninvasive sampling method to unlock the potential of wearable sensors in needle-free continuous glucose monitoring devices that can benefit people living with diabetes.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/métodos , Líquido Extracelular/química , Glucosa/análisis , Animales , Técnicas Biosensibles/instrumentación , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Hidrodinámica , Imanes/química , Modelos Animales , Piel/metabolismo , Fenómenos Fisiológicos de la Piel , Porcinos , Dispositivos Electrónicos Vestibles
8.
Anal Chem ; 93(5): 2848-2853, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33507064

RESUMEN

The detection and analysis of proteins in a label-free manner under native solution conditions is an increasingly important objective in analytical bioscience platform development. Common approaches to detect native proteins in solution often require specific labels to enhance sensitivity. Dry mass sensing approaches, by contrast, using mechanical resonators, can operate in a label-free manner and offer attractive sensitivity. However, such approaches typically suffer from a lack of analyte selectivity as the interface between standard protein separation techniques and micro-resonator platforms is often constrained by qualitative mechanical sensor performance in the liquid phase. Here, we describe a strategy that overcomes this limitation by coupling liquid chromatography with a quartz crystal microbalance (QCM) platform by using a microfluidic spray dryer. We explore a strategy which allows first to separate a protein mixture in a physiological buffer solution using size exclusion chromatography, permitting specific protein fractions to be selected, desalted, and subsequently spray-dried onto the QCM for absolute mass analysis. By establishing a continuous flow interface between the chromatography column and the spray device via a flow splitter, simultaneous protein mass detection and sample fractionation is achieved, with sensitivity down to a 100 µg/mL limit of detection. This approach for quantitative label-free protein mixture analysis offers the potential for detection of protein species under physiological conditions.


Asunto(s)
Técnicas Biosensibles , Cromatografía Liquida , Tecnicas de Microbalanza del Cristal de Cuarzo , Proteína Estafilocócica A
9.
Soft Matter ; 17(1): 201, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33325980

RESUMEN

Correction for 'Correction: Multi-scale microporous silica microcapsules from gas-in water-in oil emulsions' by Zenon Toprakcioglu et al., Soft Matter, 2020, 16, 3586-3586, DOI: .

10.
ACS Appl Mater Interfaces ; 12(29): 32951-32960, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32589387

RESUMEN

Compartmentalization and selective transport of molecular species are key aspects of chemical transformations inside the cell. In an artificial setting, the immobilization of a wide range of enzymes onto surfaces is commonly used for controlling their functionality but such approaches can restrict their efficacy and expose them to degrading environmental conditions, thus reducing their activity. Here, we employ an approach based on droplet microfluidics to generate enzyme-containing microparticles that feature an inorganic silica shell that forms a semipermeable barrier. We show that this porous shell permits selective diffusion of the substrate and product while protecting the enzymes from degradation by proteinases and maintaining their functionality over multiple reaction cycles. We illustrate the power of this approach by synthesizing microparticles that can be employed to detect glucose levels through simultaneous encapsulation of two distinct enzymes that form a controlled reaction cascade. These results demonstrate a robust, accessible, and modular approach for the formation of microparticles containing active but protected enzymes for molecular sensing applications and potential novel diagnostic platforms.


Asunto(s)
Endopeptidasa K/química , Glucosa/análisis , Técnicas Analíticas Microfluídicas , Dióxido de Silicio/química , Endopeptidasa K/metabolismo , Humanos , Tamaño de la Partícula , Dióxido de Silicio/metabolismo , Propiedades de Superficie
11.
Chemistry ; 26(27): 5965-5969, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32237164

RESUMEN

Nanoparticles are widely studied as carrier vehicles in biological systems because their size readily allows access through cellular membranes. Moreover, they have the potential to carry cargo molecules and as such, these factors make them especially attractive for intravenous drug delivery purposes. Interest in protein-based nanoparticles has recently gained attraction due to particle biocompatibility and lack of toxicity. However, the production of homogeneous protein nanoparticles with high encapsulation efficiencies, without the need for additional cross-linking or further engineering of the molecule, remains challenging. Herein, we present a microfluidic 3D co-flow device to generate human serum albumin/celastrol nanoparticles by co-flowing an aqueous protein solution with celastrol in ethanol. This microscale co-flow method resulted in the formation of nanoparticles with a homogeneous size distribution and an average size, which could be tuned from ≈100 nm to 1 µm by modulating the flow rates used. We show that the high stability of the particles stems from the covalent cross-linking of the naturally present cysteine residues within the particles formed during the assembly step. By choosing optimal flow rates during synthesis an encapsulation efficiency of 75±24 % was achieved. Finally, we show that this approach achieves significantly enhanced solubility of celastrol in the aqueous phase and, crucially, reduced cellular toxicity.


Asunto(s)
Microfluídica/métodos , Nanopartículas/química , Albúmina Sérica Humana/química , Sistemas de Liberación de Medicamentos , Humanos , Dispositivos Laboratorio en un Chip , Albúmina Sérica Humana/metabolismo , Solubilidad
12.
Soft Matter ; 16(12): 3082-3087, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32140697

RESUMEN

Controlling the surface area, pore size and pore volume of microcapsules is crucial for modulating their activity in applications including catalytic reactions, delivery strategies or even cell culture assays, yet remains challenging to achieve using conventional bulk techniques. Here we describe a microfluidics-based approach for the formation of monodisperse silica-coated micron-scale porous capsules of controllable sizes. Our method involves the generation of gas-in water-in oil emulsions, and the subsequent rapid precipitation of silica which forms around the encapsulated gas bubbles resulting in hollow silica capsules with tunable pore sizes. We demonstrate that by varying the gas phase pressure, we can control both the diameter of the bubbles formed and the number of internal bubbles enclosed within the silica microcapsule. Moreover, we further demonstrate, using optical and electron microscopy, that these silica capsules remain stable under particle drying. Such a systematic manner of producing silica-coated microbubbles and porous microparticles thus represents an attractive class of biocompatible material for biomedical and pharmaceutical related applications.


Asunto(s)
Cápsulas/química , Emulsiones/química , Aceites/química , Dióxido de Silicio/química , Agua/química , Materiales Biocompatibles/química , Composición de Medicamentos/instrumentación , Diseño de Equipo , Gases/química , Microburbujas , Porosidad
13.
Soft Matter ; 16(14): 3586, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32219268

RESUMEN

Correction for 'Multi-scale microporous silica microcapsules from gas-in water-in oil emulsions' by Zenon Toprakcioglu et al., Soft Matter, 2020, DOI: 10.1039/c9sm02274k.

14.
Angew Chem Int Ed Engl ; 58(20): 6640-6644, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-30897271

RESUMEN

Quaternized vinyl- and alkynyl-pyridine reagents were shown to react in an ultrafast and selective manner with several cysteine-tagged proteins at near-stoichiometric quantities. We have demonstrated that this method can effectively create a homogenous antibody-drug conjugate that features a precise drug-to-antibody ratio of 2, which was stable in human plasma and retained its specificity towards Her2+ cells. Finally, the developed warhead introduces a +1 charge to the overall net charge of the protein, which enabled us to show that the electrophoretic mobility of the protein may be tuned through the simple attachment of a quaternized vinyl pyridinium reagent at the cysteine residues. We anticipate the generalized use of quaternized vinyl- and alkynyl-pyridine reagents not only for bioconjugation, but also as warheads for covalent inhibition and as tools to profile cysteine reactivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...