Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 436, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126499

RESUMEN

Microbial non-phosphorylative oxidative pathways present promising potential in the biosynthesis of platform chemicals from the hemicellulosic fraction of lignocellulose. An L-arabinonate dehydratase from Rhizobium leguminosarum bv. trifolii catalyzes the rate-limiting step in the non-phosphorylative oxidative pathways, that is, converts sugar acid to 2-dehydro-3-deoxy sugar acid. We have shown earlier that the enzyme forms a dimer of dimers, in which the C-terminal histidine residue from one monomer participates in the formation of the active site of an adjacent monomer. The histidine appears to be conserved across the sequences of sugar acid dehydratases. To study the role of the C-terminus, five variants (H579A, H579F, H579L, H579Q, and H579W) were produced. All variants showed decreased activity for the tested sugar acid substrates, except the variant H579L on D-fuconate, which showed about 20% increase in activity. The reaction kinetic data showed that the substrate preference was slightly modified in H579L compared to the wild-type enzyme, demonstrating that the alternation of the substrate preference of sugar acid dehydratases is possible. In addition, a crystal structure of H579L was determined at 2.4 Å with a product analog 2-oxobutyrate. This is the first enzyme-ligand complex structure from an IlvD/EDD superfamily enzyme. The binding of 2-oxobutyrate suggests how the substrate would bind into the active site in the orientation, which could lead to the dehydration reaction. KEY POINTS: • Mutation of the last histidine at the C-terminus changed the catalytic activity of L-arabinonate dehydratase from R. leguminosarum bv. trifolii against various C5/C6 sugar acids. • The variant H579L of L-arabinonate dehydratase showed an alteration of substrate preferences compared with the wild type. • The first enzyme-ligand complex crystal structure of an IlvD/EDD superfamily enzyme was solved.


Asunto(s)
Hidroliasas , Rhizobium leguminosarum , Hidroliasas/metabolismo , Hidroliasas/genética , Hidroliasas/química , Especificidad por Sustrato , Rhizobium leguminosarum/enzimología , Rhizobium leguminosarum/genética , Cinética , Dominio Catalítico , Azúcares Ácidos/metabolismo , Histidina/metabolismo , Histidina/química , Histidina/genética , Multimerización de Proteína , Modelos Moleculares , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
2.
FEBS J ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206623

RESUMEN

Anti-immunocomplex (Anti-IC) antibodies have been used in developing noncompetitive immunoassays for detecting small molecule analytics (haptens). These antibodies bind specifically to the primary antibody in complex with hapten. Although several anti-IC antibody-based immunoassays have been developed, structural studies of these systems are very limited. In this study, we determined the crystal structures of anti-testosterone Fab220 in complex with testosterone and the corresponding anti-IC antibody FabB12. The structure of the ternary complex of testosterone, Fab220, and FabB12 was predicted using LightDock and AlphaFold. The ternary complex has a large (~ 1100 Å2) interface between antibodies. The A-ring of the testosterone bound by Fab220 also participates in the binding of the anti-IC antibody. The structural analysis was complemented by native mass spectrometry. The affinities for testosterone (TES) and three cross-reactive steroids [dihydrotestosterone (DHT), androstenedione (A4), and dehydroepiandrosterone sulfate (DHEA-S)] were measured, and ternary complex formation was studied. The results clearly show the ternary complex formation in the solution. Although DHT showed significant cross-reactivity, A4 and DHEA-S exhibited minor cross-reactivity.

3.
ACS Omega ; 9(15): 17089-17096, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645339

RESUMEN

In the development of proteins, aptamers, and molecular imprints for diagnostic purposes, a major goal is to obtain a molecule with both a high binding affinity and specificity for the target ligand. Cushing syndrome or Addison's disease can be diagnosed by cortisol level tests. We have previously characterized and solved the crystal structure of an anti-cortisol (17) Fab fragment having a high affinity to cortisol but also significant cross-reactivity to other glucocorticoids, especially the glucocorticoid drug prednisolone. We used native mass spectrometry (MS) to determine the binding affinities of nine steroid hormones to anti-cortisol (17) Fab, including steroidogenic precursors of cortisol. Based on the results, the number of hydroxyl groups in the structure of a steroid ligand plays a key role in the antigen recognition by the Fab fragment as the ligands with three hydroxyl groups, cortisol and prednisolone, had the highest affinities. The antibody affinity toward steroid hormones often decreases with a decrease in the number of hydroxyl groups in the structure. The presence of the hydroxyl group at position C11 increased the affinity more than did the other hydroxyl groups at positions C17 or C21. The binding affinities obtained by native MS were compared to the values determined by surface plasmon resonance (SPR), and the affinities were found to correlate well between these two techniques. Our study demonstrates that native MS with a large dynamic range and high sensitivity is a versatile tool for ligand binding studies of proteins.

4.
Ecotoxicol Environ Saf ; 273: 116130, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394761

RESUMEN

The manganese peroxidase (MnP) can degrade multiple mycotoxins including deoxynivalenol (DON) efficiently; however, the lignin components abundant in foods and feeds were discovered to interfere with DON catalysis. Herein, using MnP from Ceriporiopsis subvermispora (CsMnP) as a model, it was demonstrated that desired catalysis of DON, but not futile reactions with lignin, in the reaction systems containing feeds could be achieved by engineering MnP and supplementing with a boosting reactant. Specifically, two successive strategies (including the fusion of CsMnP to a DON-recognizing ScFv and identification of glutathione as a specific targeting enhancer) were combined to overcome the lignin competition, which together resulted into elevation of the degradation rate from 2.5% to as high as 82.7% in the feeds. The method to construct a targeting MnP and fortify it with an additional enhancer could be similarly applied to catalyze the many other mycotoxins with yet unknown responsive biocatalysts.


Asunto(s)
Lignina , Micotoxinas , Tricotecenos , Lignina/metabolismo , Peroxidasas/metabolismo
5.
J Struct Biol ; 215(2): 107966, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100101

RESUMEN

Cortisol is a steroid hormone that is produced by the adrenal gland. It is a primary stress hormone that increases glucose levels in the blood stream. High concentrations of cortisol in the body can be used as a biomarker for acute and chronic stress and related mental and physiological disorders. Therefore, the accurate quantification of cortisol levels in body fluids is essential for clinical diagnosis. In this article, we describe the isolation of recombinant anti-cortisol antibodies with high affinity for cortisol and discover their cross-reactivity with other glucocorticoids. To describe the cortisol binding site and elucidate the structural basis for the binding specificity, the high-resolution crystal structures of the anti-cortisol (17) Fab fragment in the absence of glucocorticoid (2.00 Å) and the presence of cortisol (2.26 Å), corticosterone (1.86 Å), cortisone (1.85 Å) and prednisolone (2.00 Å) were determined. To our knowledge, this is the first determined crystal structure of a cortisol-specific antibody. The recognition of cortisol is driven by hydrophobic interactions and hydrogen bonding at the protein-ligand interface coupled with a conformational transition. Comparison of ligand-free and ligand-bound structures showed that the side chains of residues Tyr58-H and Arg56-H can undergo local conformational changes at the binding site, most likely prior to the binding event via a conformational selection mechanism. Compared to other anti-steroid antibody-antigen complexes, (17) Fab possesses a structurally unique steroid binding site, as the H3 loop from the CDR area has only a minor contribution, but framework residues have a prominent contribution to hapten binding.


Asunto(s)
Glucocorticoides , Fragmentos Fab de Inmunoglobulinas , Fragmentos Fab de Inmunoglobulinas/química , Secuencia de Aminoácidos , Hidrocortisona , Modelos Moleculares , Cristalografía por Rayos X , Conformación Proteica
6.
Bioresour Technol ; 372: 128695, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731612

RESUMEN

The efficient degradation of plant polysaccharides in agricultural waste requires xylanases with high catalytic activity. In this study, the C-terminal proline-rich GH10 xylanase XynA from sheep rumen was investigated using product analysis, structural characterization, truncated and site-directed mutagenesis, molecular dynamics simulation, and application evaluation, revealing that the proline-rich C-terminus contributes to the interaction at the substrate-binding pocket to reduce the binding free energy. Compared to the C-terminally truncated enzyme XynA-Tr, XynA has a more favorable conformation for proton transfer and affinity attack, facilitating the degradation of oligomeric and beechwood xylan without altering the hydrolysis pattern. Moreover, both the reduced sugar yield and weight loss of the pretreated wheat bran, corn cob, and corn stalk hydrolyzed by XynA for 12 h increased by more than 30 %. These findings are important to better understand the relationship between enzyme activities and their terminal regions and suggest candidate materials for lignocellulosic biomass utilization.


Asunto(s)
Endo-1,4-beta Xilanasas , Lignina , Animales , Ovinos , Endo-1,4-beta Xilanasas/metabolismo , Biomasa , Lignina/metabolismo , Polisacáridos , Xilanos/metabolismo
7.
Biotechnol Biofuels Bioprod ; 15(1): 147, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36578086

RESUMEN

Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as D-xylose and L-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.

8.
Toxins (Basel) ; 14(7)2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35878178

RESUMEN

The fungal secondary metabolite patulin is a mycotoxin widespread in foods and beverages which poses a serious threat to human health. However, no enzyme was known to be able to degrade this mycotoxin. For the first time, we discovered that a manganese peroxidase (MrMnP) from Moniliophthora roreri can efficiently degrade patulin. The MrMnP gene was cloned into pPICZα(A) and then the recombinant plasmid was transformed into Pichia pastoris X-33. The recombinant strain produced extracellular manganese peroxidase with an activity of up to 3659.5 U/L. The manganese peroxidase MrMnP was able to rapidly degrade patulin, with hydroascladiol appearing as a main degradation product. Five mg/L of pure patulin were completely degraded within 5 h. Moreover, up to 95% of the toxin was eliminated in a simulated patulin-contaminated apple juice after 24 h. Using Escherichia coli as a model, it was demonstrated that the deconstruction of patulin led to detoxification. Collectively, these traits make MrMnP an intriguing candidate useful in enzymatic detoxification of patulin in foods and beverages.


Asunto(s)
Malus , Patulina , Agaricales , Bebidas/análisis , Contaminación de Alimentos/análisis , Humanos , Malus/microbiología , Patulina/metabolismo , Peroxidasas , Saccharomycetales
9.
Bioresour Technol ; 358: 127434, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35680086

RESUMEN

The recalcitrance of cellulosic biomass greatly hinders its enzymatic degradation. Expansins induce cell wall loosening and promote efficient cellulose utilization; however, the molecular mechanism underlying their action is not well understood. In this study, TlEXLX1, a fungal expansin from Talaromyces leycettanus JCM12802, was characterized in terms of phylogeny, synergy, structure, and mechanism of action. TlEXLX1 displayed varying degrees of synergism with commercial cellulase in the pretreatment of corn straw and filter paper. TlEXLX1 binds to cellulose via domain 2, mediated by CH-π interactions with residues Tyr291, Trp292, and Tyr327. Residues Asp237, Glu238, and Asp248 in domain 1 form hydrogen bonds with glucose units and break the inherent hydrogen bonding within the cellulose matrix. This study identified the expansin amino acid residues crucial for cellulose binding, and elucidated the structure and function of expansins in cell wall networks; this has potential applications in biomass utilization.


Asunto(s)
Celulasa , Celulosa , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Celulasa/metabolismo , Celulosa/química , Hidrólisis
10.
Protein Sci ; 31(2): 371-383, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761460

RESUMEN

Xylonolactonase Cc XylC from Caulobacter crescentus catalyzes the hydrolysis of the intramolecular ester bond of d-xylonolactone. We have determined crystal structures of Cc XylC in complex with d-xylonolactone isomer analogues d-xylopyranose and (r)-(+)-4-hydroxy-2-pyrrolidinone at high resolution. Cc XylC has a 6-bladed ß-propeller architecture, which contains a central open channel having the active site at one end. According to our previous native mass spectrometry studies, Cc XylC is able to specifically bind Fe2+ . The crystal structures, presented here, revealed an active site bound metal ion with an octahedral binding geometry. The side chains of three amino acid residues, Glu18, Asn146, and Asp196, which participate in binding of metal ion are located in the same plane. The solved complex structures allowed suggesting a reaction mechanism for intramolecular ester bond hydrolysis in which the major contribution for catalysis arises from the carbonyl oxygen coordination of the xylonolactone substrate to the Fe2+ . The structure of Cc XylC was compared with eight other ester hydrolases of the ß-propeller hydrolase family. The previously published crystal structures of other ß-propeller hydrolases contain either Ca2+ , Mg2+ , or Zn2+ and show clear similarities in ligand and metal ion binding geometries to that of Cc XylC. It would be interesting to reinvestigate the metal binding specificity of these enzymes and clarify whether they are also able to use Fe2+ as a catalytic metal. This could further expand our understanding of utilization of Fe2+ not only in oxidative enzymes but also in hydrolases.


Asunto(s)
Hidrolasas de Éster Carboxílico , Caulobacter crescentus , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Dominio Catalítico , Caulobacter crescentus/enzimología , Cristalografía por Rayos X , Hidrolasas , Hidrólisis , Hierro , Lactonas/química , Lactonas/metabolismo
11.
Biochemistry ; 60(41): 3046-3049, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34633186

RESUMEN

Caulobacter crescentus xylonolactonase (Cc XylC, EC 3.1.1.68) catalyzes an intramolecular ester bond hydrolysis over a nonenzymatic acid/base catalysis. Cc XylC is a member of the SMP30 protein family, whose members have previously been reported to be active in the presence of bivalent metal ions, such as Ca2+, Zn2+, and Mg2+. By native mass spectrometry, we studied the binding of several bivalent metal ions to Cc XylC and observed that it binds only one of them, namely, the Fe2+ cation, specifically and with a high affinity (Kd = 0.5 µM), pointing out that Cc XylC is a mononuclear iron protein. We propose that bivalent metal cations also promote the reaction nonenzymatically by stabilizing a short-lived bicyclic intermediate on the lactone isomerization reaction. An analysis of the reaction kinetics showed that Cc XylC complexed with Fe2+ can speed up the hydrolysis of d-xylono-1,4-lactone by 100-fold and that of d-glucono-1,5-lactone by 10-fold as compared to the nonenzymatic reaction. To our knowledge, this is the first discovery of a nonheme mononuclear iron-binding enzyme that catalyzes an ester bond hydrolysis reaction.


Asunto(s)
Proteínas Bacterianas/química , Hidrolasas de Éster Carboxílico/química , Caulobacter crescentus/enzimología , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Gluconatos/química , Hidrólisis , Hierro/química , Hierro/metabolismo , Cinética , Lactonas/química , Espectrometría de Masas/métodos , Unión Proteica
12.
Appl Microbiol Biotechnol ; 105(16-17): 6215-6228, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34410440

RESUMEN

Deoxyribose-5-phosphate aldolases (DERAs, EC 4.1.2.4) are acetaldehyde-dependent, Class I aldolases catalyzing in nature a reversible aldol reaction between an acetaldehyde donor (C2 compound) and glyceraldehyde-3-phosphate acceptor (C3 compound, C3P) to generate deoxyribose-5-phosphate (C5 compound, DR5P). DERA enzymes have been found to accept also other types of aldehydes as their donor, and in particular as acceptor molecules. Consequently, DERA enzymes can be applied in C-C bond formation reactions to produce novel compounds, thus offering a versatile biocatalytic alternative for synthesis. DERA enzymes, found in all kingdoms of life, share a common TIM barrel fold despite the low overall sequence identity. The catalytic mechanism is well-studied and involves formation of a covalent enzyme-substrate intermediate. A number of protein engineering studies to optimize substrate specificity, enzyme efficiency, and stability of DERA aldolases have been published. These have employed various engineering strategies including structure-based design, directed evolution, and recently also machine learning-guided protein engineering. For application purposes, enzyme immobilization and usage of whole cell catalysis are preferred methods as they improve the overall performance of the biocatalytic processes, including often also the stability of the enzyme. Besides single-step enzymatic reactions, DERA aldolases have also been applied in multi-enzyme cascade reactions both in vitro and in vivo. The DERA-based applications range from synthesis of commodity chemicals and flavours to more complicated and high-value pharmaceutical compounds. KEY POINTS: • DERA aldolases are versatile biocatalysts able to make new C-C bonds. • Synthetic utility of DERAs has been improved by protein engineering approaches. • Computational methods are expected to speed up the future DERA engineering efforts.


Asunto(s)
Aldehído-Liasas , Ribosamonofosfatos , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Fructosa-Bifosfato Aldolasa , Especificidad por Sustrato
13.
Biotechnol Biofuels ; 14(1): 127, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059129

RESUMEN

BACKGROUND: Nowadays there is a strong trend towards a circular economy using lignocellulosic biowaste for the production of biofuels and other bio-based products. The use of enzymes at several stages of the production process (e.g., saccharification) can offer a sustainable route due to avoidance of harsh chemicals and high temperatures. For novel enzyme discovery, physically linked gene clusters targeting carbohydrate degradation in bacteria, polysaccharide utilization loci (PULs), are recognized 'treasure troves' in the era of exponentially growing numbers of sequenced genomes. RESULTS: We determined the biochemical properties and structure of a protein of unknown function (PUF) encoded within PULs of metagenomes from beaver droppings and moose rumen enriched on poplar hydrolysate. The corresponding novel bifunctional carbohydrate esterase (CE), now named BD-FAE, displayed feruloyl esterase (FAE) and acetyl esterase activity on simple, synthetic substrates. Whereas acetyl xylan esterase (AcXE) activity was detected on acetylated glucuronoxylan from birchwood, only FAE activity was observed on acetylated and feruloylated xylooligosaccharides from corn fiber. The genomic contexts of 200 homologs of BD-FAE revealed that the 33 closest homologs appear in PULs likely involved in xylan breakdown, while the more distant homologs were found either in alginate-targeting PULs or else outside PUL contexts. Although the BD-FAE structure adopts a typical α/ß-hydrolase fold with a catalytic triad (Ser-Asp-His), it is distinct from other biochemically characterized CEs. CONCLUSIONS: The bifunctional CE, BD-FAE, represents a new candidate for biomass processing given its capacity to remove ferulic acid and acetic acid from natural corn and birchwood xylan substrates, respectively. Its detailed biochemical characterization and solved crystal structure add to the toolbox of enzymes for biomass valorization as well as structural information to inform the classification of new CEs.

14.
J Agric Food Chem ; 69(22): 6351-6359, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34043362

RESUMEN

Thermostable enzymes have many advantages for industrial applications. Therefore, in this study, computer-aided design technology was used to improve the thermostability of a highly active endo-polygalacturonase from Talaromyces leycettanus JCM12802 at an optimal temperature of 70 °C. The melting temperature and specific activity of the obtained mutant T316C/G344C were increased by 10 °C and 36.5%, respectively, compared with the wild-type enzyme. The crystal structure of the T316C/G344C mutant showed no formation of a disulfide bond between the introduced cysteines, indicating a different mechanism than the conventional mechanism underlying improved enzyme thermostability. The cysteine substitutions directly formed a new alkyl hydrophobic interaction and caused conformational changes in the side chains of the adjacent residues Asn315 and Thr343, which in turn caused a local reconstruction of hydrogen bonds. This method greatly improved the thermostability of the enzyme without affecting its activity; thus, our findings are of great significance for both theoretical research and practical applications.


Asunto(s)
Poligalacturonasa , Talaromyces , Cisteína , Estabilidad de Enzimas , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Talaromyces/genética , Talaromyces/metabolismo , Temperatura
15.
J Agric Food Chem ; 69(2): 815-823, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33404235

RESUMEN

Thermostability is a key property of industrial enzymes. Endo-polygalacturonases of the glycoside hydrolase family 28 have many practical applications, but only few of their structures have been determined, and the reasons for their stability remain unclear. We identified and characterized the Talaromyces leycettanus JCM12802 endo-polygalacturonase TlPGA, which differs from other GH28 family members because of its high catalytic activity, with an optimum temperature of 70 °C. Distinctive features were revealed by comparison of thermophilic TlPGA and all known structures of fungal endo-polygalacturonases, including a relatively large exposed polar accessible surface area in thermophilic TlPGA. By mutating potentially important residues in thermophilic TlPGA, we identified Thr284 as a critical residue. Mutant T284A was comparable to thermophilic TlPGA in melting temperature but exhibited a significantly lower half-life and half-inactivation temperature, implicating residue Thr284 in the kinetic stability of thermophilic TlPGA. Structure analysis of thermophilic TlPGA and mutant T284A revealed that a carbon-oxygen hydrogen bond between the hydroxyl group of Thr284 and the Cα atom of Gln255, and the stable conformation adopted by Gln255, contribute to its kinetic stability. Our results clarify the mechanism underlying the kinetic stability of GH28 endo-polygalacturonases and may guide the engineering of thermostable enzymes for industrial applications.


Asunto(s)
Proteínas Fúngicas/química , Poligalacturonasa/química , Talaromyces/enzimología , Secuencia de Aminoácidos , Biocatálisis , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Conformación Proteica , Especificidad por Sustrato , Talaromyces/química , Talaromyces/genética , Temperatura
16.
Appl Microbiol Biotechnol ; 104(24): 10515-10529, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33147349

RESUMEN

In this work, deoxyribose-5-phosphate aldolase (Ec DERA, EC 4.1.2.4) from Escherichia coli was chosen as the protein engineering target for improving the substrate preference towards smaller, non-phosphorylated aldehyde donor substrates, in particular towards acetaldehyde. The initial broad set of mutations was directed to 24 amino acid positions in the active site or in the close vicinity, based on the 3D complex structure of the E. coli DERA wild-type aldolase. The specific activity of the DERA variants containing one to three amino acid mutations was characterised using three different substrates. A novel machine learning (ML) model utilising Gaussian processes and feature learning was applied for the 3rd mutagenesis round to predict new beneficial mutant combinations. This led to the most clear-cut (two- to threefold) improvement in acetaldehyde (C2) addition capability with the concomitant abolishment of the activity towards the natural donor molecule glyceraldehyde-3-phosphate (C3P) as well as the non-phosphorylated equivalent (C3). The Ec DERA variants were also tested on aldol reaction utilising formaldehyde (C1) as the donor. Ec DERA wild-type was shown to be able to carry out this reaction, and furthermore, some of the improved variants on acetaldehyde addition reaction turned out to have also improved activity on formaldehyde. KEY POINTS: • DERA aldolases are promiscuous enzymes. • Synthetic utility of DERA aldolase was improved by protein engineering approaches. • Machine learning methods aid the protein engineering of DERA.


Asunto(s)
Escherichia coli , Fructosa-Bifosfato Aldolasa , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Aprendizaje Automático , Ingeniería de Proteínas , Especificidad por Sustrato
17.
Int J Biol Macromol ; 154: 1586-1595, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31706815

RESUMEN

Proteinase K (PROK) from Parengyodontium album hydrolyzes keratin, a major protein component of poultry feathers, which are an inexpensive and renewable protein resource. Based on structural studies for analysis of amino acid flexibility near the catalytic center, identification of highly conserved residues, and experimental screening, we obtained a mutant R218S with residual activity 1.6-fold higher than that of PROK after incubation at 60 °C for 1 h. Molecular dynamics simulation indicated that substitution of Arg218 with Ser leads to three hydrogen bonds being introduced into the structure, stabilizing the ß-sheet in which Ser218 is located, and thus improvement of thermostability. Additionally, the mutant R218S had a 15% increase in specific activity compared to PROK and improvement in the rate and thoroughness of feather degradation compared with PROK. We confirmed the positive effects of enhancing catalytic center rigidity on enzyme thermostability, a finding which may have broad applications.


Asunto(s)
Biocatálisis , Endopeptidasa K/metabolismo , Plumas/metabolismo , Hypocreales/enzimología , Animales , Endopeptidasa K/química , Endopeptidasa K/genética , Simulación de Dinámica Molecular , Mutación , Conformación Proteica
18.
Chembiochem ; 19(22): 2348-2352, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30204291

RESUMEN

Catechol oxidases and tyrosinases are coupled binuclear copper enzymes that oxidize various o-diphenolic compounds to corresponding o-quinones. Tyrosinases have an additional monooxygenation ability to hydroxylate monophenol to o-diphenol. It is still not clear what causes the difference in the catalytic activities. We solved a complex structure of Aspergillus oryzae catechol oxidase with resorcinol bound into the active site. Catalytic activity of A. oryzae catechol oxidase was studied, for the first time, by high-resolution FT-ICR mass spectrometry to shed light on the reaction mechanism. The enzyme was also found to catalyze monooxygenation of small phenolics, which provides a novel perspective for the discussion of differences in the catalytic activity between tyrosinases and catechol oxidases. According to the results, two binding modes for resorcinol are suggested and a reaction mechanism for coupled binuclear copper enzymes is discussed.


Asunto(s)
Aspergillus oryzae/enzimología , Catecol Oxidasa , Monofenol Monooxigenasa/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico , Catecol Oxidasa/química , Catecol Oxidasa/metabolismo , Cobre/química , Cristalografía por Rayos X , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Especificidad por Sustrato
19.
PLoS One ; 13(5): e0196691, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29715329

RESUMEN

Coupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy) and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB) and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.


Asunto(s)
Aspergillus oryzae/química , Catecol Oxidasa/química , Cobre/química , Sitios de Unión , Cristalografía por Rayos X/métodos , Oxidación-Reducción , Conformación Proteica
20.
Sci Rep ; 8(1): 865, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339766

RESUMEN

The Ilv/ED dehydratase protein family includes dihydroxy acid-, gluconate-, 6-phosphogluconate- and pentonate dehydratases. The members of this family are involved in various biosynthetic and carbohydrate metabolic pathways. Here, we describe the first crystal structure of D-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) at 2.7 Å resolution and compare it with other available enzyme structures from the IlvD/EDD protein family. The quaternary structure of CcXyDHT is a tetramer, and each monomer is composed of two domains in which the N-terminal domain forms a binding site for a [2Fe-2S] cluster and a Mg2+ ion. The active site is located at the monomer-monomer interface and contains residues from both the N-terminal recognition helix and the C-terminus of the dimeric counterpart. The active site also contains a conserved Ser490, which probably acts as a base in catalysis. Importantly, the cysteines that participate in the binding and formation of the [2Fe-2S] cluster are not all conserved within the Ilv/ED dehydratase family, which suggests that some members of the IlvD/EDD family may bind different types of [Fe-S] clusters.


Asunto(s)
Hidroliasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Dominio Catalítico , Caulobacter crescentus/enzimología , Cristalografía por Rayos X , Hidroliasas/metabolismo , Magnesio/química , Magnesio/metabolismo , Estructura Cuaternaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA