Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 336: 192-206, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34126169

RESUMEN

Nanotechnology-based health products are providing innovative solutions in health technologies and the pharmaceutical field, responding to unmet clinical needs. However, suitable standardised methods need to be available for quality and safety assessments of these innovative products prior to their translation into the clinic and for monitoring their performance when manufacturing processes are changed. The question arises which technological solutions are currently available within the scientific community to support the requested characterisation of nanotechnology-based products, and which methodological developments should be prioritized to support product developers in their regulatory assessment. To this end, the work presented here explored the state-of-the-art methods to identify methodological gaps associated with the preclinical characterisation of nanotechnology-based medicinal products and medical devices. The regulatory information needs, as expressed by regulatory authorities, were extracted from the guidance documents released so far for nanotechnology-based health products and mapped against available methods, thus allowing an analysis of methodological gaps and needs. In the first step, only standardised methods were considered, leading to the identification of methodological needs in five areas of characterisation, including: (i) surface properties, (ii) drug loading and release, (iii) kinetic properties in complex biological media, (iv) ADME (absorption, distribution, metabolism and excretion) parameters and (v) interaction with blood and the immune system. In the second step, a detailed gap analysis included analytical approaches in earlier stages of development, and standardised test methods from outside of the nanotechnology field that could address the identified areas of gaps. Based on this analysis, three categories of methodological needs were identified, including (i) method optimisation/adaptation to nanotechnological platforms, (ii) method validation/standardisation and (iii) method development for those areas where no technological solutions currently exist. The results of the analysis presented in this work should raise awareness within the scientific community on existing and emerging methodological needs, setting priorities for the development and standardisation of relevant analytical and toxicological methods allowing the development of a robust testing strategy for nanotechnology-based health products.


Asunto(s)
Nanomedicina , Nanotecnología , Estándares de Referencia
2.
Nanotoxicology ; 9 Suppl 1: 118-32, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25923349

RESUMEN

In spite of recent advances in describing the health outcomes of exposure to nanoparticles (NPs), it still remains unclear how exactly NPs interact with their cellular targets. Size, surface, mass, geometry, and composition may all play a beneficial role as well as causing toxicity. Concerns of scientists, politicians and the public about potential health hazards associated with NPs need to be answered. With the variety of exposure routes available, there is potential for NPs to reach every organ in the body but we know little about the impact this might have. The main objective of the FP7 NanoTEST project ( www.nanotest-fp7.eu ) was a better understanding of mechanisms of interactions of NPs employed in nanomedicine with cells, tissues and organs and to address critical issues relating to toxicity testing especially with respect to alternatives to tests on animals. Here we describe an approach towards alternative testing strategies for hazard and risk assessment of nanomaterials, highlighting the adaptation of standard methods demanded by the special physicochemical features of nanomaterials and bioavailability studies. The work has assessed a broad range of toxicity tests, cell models and NP types and concentrations taking into account the inherent impact of NP properties and the effects of changes in experimental conditions using well-characterized NPs. The results of the studies have been used to generate recommendations for a suitable and robust testing strategy which can be applied to new medical NPs as they are developed.


Asunto(s)
Nanomedicina/métodos , Nanopartículas/toxicidad , Pruebas de Toxicidad/métodos , Humanos , Técnicas In Vitro/normas , Pruebas de Toxicidad/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...