Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(17): 168520, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39237197

RESUMEN

The red flour beetle Tribolium castaneum has emerged as a powerful model in insect functional genomics. However, a major limitation in the field is the lack of a detailed spatio-temporal view of the genetic signatures underpinning the function of distinct tissues and life stages. Here, we present an ontogenetic and tissue-specific web-based resource for Tribolium transcriptomics: BeetleAtlas (https://www.beetleatlas.org). This web application provides access to a database populated with quantitative expression data for nine adult and seven larval tissues, as well as for four embryonic stages of Tribolium. BeetleAtlas allows one to search for individual Tribolium genes to obtain values of both total gene expression and enrichment in different tissues, together with data for individual isoforms. To facilitate cross-species studies, one can also use Drosophila melanogaster gene identifiers to search for related Tribolium genes. For retrieved genes there are options to identify and display the tissue expression of related Tribolium genes or homologous Drosophila genes. Five additional search modes are available to find genes conforming to any of the following criteria: exhibiting high expression in a particular tissue; showing significant differences in expression between larva and adult; having a peak of expression at a specific stage of embryonic development; belonging to a particular functional category; and displaying a pattern of tissue expression similar to that of a query gene. We illustrate how the different feaures of BeetleAtlas can be used to illuminate our understanding of the genetic mechanisms underpinning the biology of what is the largest animal group on earth.


Asunto(s)
Transcriptoma , Tribolium , Animales , Tribolium/genética , Tribolium/embriología , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Bases de Datos Genéticas , Especificidad de Órganos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
2.
Nat Commun ; 15(1): 6126, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033139

RESUMEN

Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.


Asunto(s)
Tejido Adiposo , Resistencia a la Insulina , Obesidad , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Tejido Adiposo/metabolismo , Ratones , Obesidad/metabolismo , Insulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Adipocitos/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Músculos/metabolismo , Masculino , Músculo Esquelético/metabolismo , Drosophila melanogaster/metabolismo , Dieta Alta en Grasa/efectos adversos , Neuronas/metabolismo , Ratones Endogámicos C57BL
3.
J Cell Sci ; 136(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694602

RESUMEN

Transporting epithelia provide a protective barrier against pathogenic insults while allowing the controlled exchange of ions, solutes and water with the external environment. In invertebrates, these functions depend on formation and maintenance of 'tight' septate junctions (SJs). However, the mechanism by which SJs affect transport competence and tissue homeostasis, and how these are modulated by ageing, remain incompletely understood. Here, we demonstrate that the Drosophila renal (Malpighian) tubules undergo an age-dependent decline in secretory capacity, which correlates with mislocalisation of SJ proteins and progressive degeneration in cellular morphology and tissue homeostasis. Acute loss of the SJ protein Snakeskin in adult tubules induced progressive changes in cellular and tissue architecture, including altered expression and localisation of junctional proteins with concomitant loss of cell polarity and barrier integrity, demonstrating that compromised junctional integrity is sufficient to replicate these ageing-related phenotypes. Taken together, our work demonstrates a crucial link between epithelial barrier integrity, tubule transport competence, renal homeostasis and organismal viability, as well as providing novel insights into the mechanisms underpinning ageing and renal disease.

4.
Curr Biol ; 33(14): R748-R749, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37490855

RESUMEN

Beaven et al. introduce the insect cryptonephridial complex, a multi-organ system that is one of the most powerful water-extraction systems in nature.


Asunto(s)
Insectos , Agua , Animales
5.
Proc Natl Acad Sci U S A ; 120(13): e2217084120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943876

RESUMEN

More than half of all extant metazoan species on earth are insects. The evolutionary success of insects is linked with their ability to osmoregulate, suggesting that they have evolved unique physiological mechanisms to maintain water balance. In beetles (Coleoptera)-the largest group of insects-a specialized rectal ("cryptonephridial") complex has evolved that recovers water from the rectum destined for excretion and recycles it back to the body. However, the molecular mechanisms underpinning the remarkable water-conserving functions of this system are unknown. Here, we introduce a transcriptomic resource, BeetleAtlas.org, for the exceptionally desiccation-tolerant red flour beetle Tribolium castaneum, and demonstrate its utility by identifying a cation/H+ antiporter (NHA1) that is enriched and functionally significant in the Tribolium rectal complex. NHA1 localizes exclusively to a specialized cell type, the leptophragmata, in the distal region of the Malpighian tubules associated with the rectal complex. Computational modeling and electrophysiological characterization in Xenopus oocytes show that NHA1 acts as an electroneutral K+/H+ antiporter. Furthermore, genetic silencing of Nha1 dramatically increases excretory water loss and reduces organismal survival during desiccation stress, implying that NHA1 activity is essential for maintaining systemic water balance. Finally, we show that Tiptop, a conserved transcription factor, regulates NHA1 expression in leptophragmata and controls leptophragmata maturation, illuminating the developmental mechanism that establishes the functions of this cell. Together, our work provides insights into the molecular architecture underpinning the function of one of the most powerful water-conserving mechanisms in nature, the beetle rectal complex.


Asunto(s)
Tribolium , Animales , Tribolium/genética , Tribolium/metabolismo , Protones , Antiportadores/metabolismo , Recto/metabolismo , Agua/metabolismo
6.
Nat Metab ; 4(11): 1532-1550, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36344765

RESUMEN

Animals must adapt their dietary choices to meet their nutritional needs. How these needs are detected and translated into nutrient-specific appetites that drive food-choice behaviours is poorly understood. Here we show that enteroendocrine cells of the adult female Drosophila midgut sense nutrients and in response release neuropeptide F (NPF), which is an ortholog of mammalian neuropeptide Y-family gut-brain hormones. Gut-derived NPF acts on glucagon-like adipokinetic hormone (AKH) signalling to induce sugar satiety and increase consumption of protein-rich food, and on adipose tissue to promote storage of ingested nutrients. Suppression of NPF-mediated gut signalling leads to overconsumption of dietary sugar while simultaneously decreasing intake of protein-rich yeast. Furthermore, gut-derived NPF has a female-specific function in promoting consumption of protein-containing food in mated females. Together, our findings suggest that gut NPF-to-AKH signalling modulates specific appetites and regulates food choice to ensure homeostatic consumption of nutrients, providing insight into the hormonal mechanisms that underlie nutrient-specific hungers.


Asunto(s)
Proteínas de Drosophila , Hormonas Gastrointestinales , Femenino , Animales , Drosophila , Apetito , Azúcares , Proteínas de Drosophila/genética , Mamíferos
7.
Nat Commun ; 13(1): 692, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35121731

RESUMEN

The intestine is a central regulator of metabolic homeostasis. Dietary inputs are absorbed through the gut, which senses their nutritional value and relays hormonal information to other organs to coordinate systemic energy balance. However, the gut-derived hormones affecting metabolic and behavioral responses are poorly defined. Here we show that the endocrine cells of the Drosophila gut sense nutrient stress through a mechanism that involves the TOR pathway and in response secrete the peptide hormone allatostatin C, a Drosophila somatostatin homolog. Gut-derived allatostatin C induces secretion of glucagon-like adipokinetic hormone to coordinate food intake and energy mobilization. Loss of gut Allatostatin C or its receptor in the adipokinetic-hormone-producing cells impairs lipid and sugar mobilization during fasting, leading to hypoglycemia. Our findings illustrate a nutrient-responsive endocrine mechanism that maintains energy homeostasis under nutrient-stress conditions, a function that is essential to health and whose failure can lead to metabolic disorders.


Asunto(s)
Proteínas de Drosophila/metabolismo , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Hormonas Gastrointestinales/metabolismo , Homeostasis , Nutrientes/metabolismo , Somatostatina/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ingestión de Alimentos/genética , Metabolismo Energético/genética , Células Enteroendocrinas/metabolismo , Hormonas Gastrointestinales/genética , Técnicas de Inactivación de Genes , Humanos , Hipoglucemia/genética , Hipoglucemia/metabolismo , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Somatostatina/genética , Análisis de Supervivencia
8.
Nat Commun ; 12(1): 5178, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462441

RESUMEN

Animals maintain metabolic homeostasis by modulating the activity of specialized organs that adjust internal metabolism to external conditions. However, the hormonal signals coordinating these functions are incompletely characterized. Here we show that six neurosecretory cells in the Drosophila central nervous system respond to circulating nutrient levels by releasing Capa hormones, homologs of mammalian neuromedin U, which activate the Capa receptor (CapaR) in peripheral tissues to control energy homeostasis. Loss of Capa/CapaR signaling causes intestinal hypomotility and impaired nutrient absorption, which gradually deplete internal nutrient stores and reduce organismal lifespan. Conversely, increased Capa/CapaR activity increases fluid and waste excretion. Furthermore, Capa/CapaR inhibits the release of glucagon-like adipokinetic hormone from the corpora cardiaca, which restricts energy mobilization from adipose tissue to avoid harmful hyperglycemia. Our results suggest that the Capa/CapaR circuit occupies a central node in a homeostatic program that facilitates the digestion and absorption of nutrients and regulates systemic energy balance.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neuropéptidos/metabolismo , Nutrientes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Metabolismo Energético , Femenino , Homeostasis , Hormonas de Insectos/metabolismo , Longevidad , Masculino , Neuropéptidos/genética , Oligopéptidos/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA