Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Drug Test Anal ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569566

RESUMEN

1-Acetyl-N,N-diethyllysergamide (1A-LSD, ALD-52) was first synthesized in the 1950s and found to produce psychedelic effects similar to those of LSD. Evidence suggests that ALD-52 serves as a prodrug in vivo and hydrolysis to LSD is likely responsible for its activity. Extension of the N1-alkylcarbonyl chain gives rise to novel lysergamides, which spurred further investigations into their structure-activity relationships. At the same time, ALD-52 and numerous homologues have emerged as recreational drugs ("research chemicals") that are available from online vendors. In the present study, 1-dodecanoyl-LSD (1DD-LSD), a novel N1-acylated LSD derivative, was subjected to analytical characterization and was also tested in the mouse head-twitch response (HTR) assay to assess whether it produces LSD-like effects in vivo. When tested in C57BL/6J mice, 1DD-LSD induced the HTR with a median effective dose (ED50) of 2.17 mg/kg, which was equivalent to 3.60 µmol/kg. Under similar experimental conditions, LSD has 27-fold higher potency than 1DD-LSD in the HTR assay. Previous work has shown that other homologues such as ALD-52 and 1-propanoyl-LSD also have considerably higher potency than 1DD-LSD in mice, which suggests that hydrolysis of the 1-dodecanoyl moiety may be comparatively less efficient in vivo. Further investigations are warranted to determine whether the increased lipophilicity of 1DD-LSD causes it to be sequestered in fat, thereby reducing its exposure to enzymatic hydrolysis in plasma and tissues. Further clinical studies are also required to assess its activity in humans and to test the prediction that it could potentially serve as a long-acting prodrug for LSD.

2.
ACS Pharmacol Transl Sci ; 7(2): 478-492, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38357283

RESUMEN

Functional selectivity in the context of serotonin 2A (5-HT2A) receptor agonists is often described as differences psychedelic compounds have in the activation of Gq vs ß-arrestin signaling in the brain and how that may relate to inducing psychoactive and hallucinatory properties with respect to each other. However, the presence of 5-HT2A receptors throughout the body in several cell types, including endothelial, endocrine, and immune-related tissues, suggests that functional selectivity may exist in the periphery as well. Here, we examine functional selectivity between two 5-HT2A receptor agonists of the phenylalkylamine class: (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] and (R)-2,5-dimethoxy-4-trifluoromethylamphetamine [(R)-DOTFM]. Despite comparable in vitro activity at the 5-HT2A receptor as well as similar behavioral potency, (R)-DOTFM does not exhibit an ability to prevent inflammation or elevated airway hyperresponsiveness (AHR) in an acute murine ovalbumin-induced asthma model as does (R)-DOI. Furthermore, there are distinct differences between protein expression and inflammatory-related gene expression in pulmonary tissues between the two compounds. Using (R)-DOI and (R)-DOTFM as tools, we further elucidated the anti-inflammatory mechanisms underlying the powerful anti-inflammatory effects of certain psychedelics and identified key mechanistic components of the anti-inflammatory effects of psychedelics, including suppression of arginase 1 expression.

3.
Drug Test Anal ; 16(2): 187-198, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37321559

RESUMEN

Preclinical investigations have shown that N-ethyl-N-isopropyllysergamide (EIPLA) exhibits lysergic acid diethylamide (LSD)-like properties, which suggests that it might show psychoactive effects in humans. EIPLA is also an isomer of N6 -ethylnorlysergic acid N,N-diethylamide (ETH-LAD), a lysergamide known to produce psychedelic effects in humans that emerged as a research chemical. EIPLA was subjected to analysis by various forms of mass spectrometry, chromatography (GC, LC), nuclear magnetic resonance (NMR) spectroscopy, and GC condensed-phase infrared spectroscopy. The most straightforward differentiation between EIPLA and ETH-LAD included the evaluation of mass spectral features that reflected the structural differences (EIPLA: N6 -methyl and N-ethyl-N-isopropylamide group; ETH-LAD: N6 -ethyl and N,N-diethylamide group). Proton NMR analysis of blotter extracts suggested that EIPLA was detected as the base instead of a salt, and two blotter extracts suspected to contain EIPLA revealed the detection of 96.9 ± 0.5 µg (RSD: 0.6%) and 85.8 ± 2.8 µg base equivalents based on LC-MS analysis. The in vivo activity of EIPLA was evaluated using the mouse head-twitch response (HTR) assay. Similar to LSD and other serotonergic psychedelics, EIPLA induced the HTR (ED50 = 234.6 nmol/kg), which was about half the potency of LSD (ED50 = 132.8 nmol/kg). These findings are consistent with the results of previous studies demonstrating that EIPLA can mimic the effects of known psychedelic drugs in rodent behavioral models. The dissemination of analytical data for EIPLA was deemed justifiable to aid future forensic and clinical investigations.


Asunto(s)
Alucinógenos , Humanos , Ratones , Animales , Alucinógenos/farmacología , Alucinógenos/química , Dietilamida del Ácido Lisérgico/química , Espectrometría de Masas , Cromatografía Líquida con Espectrometría de Masas , Espectroscopía de Resonancia Magnética/métodos
4.
Nat Commun ; 14(1): 8221, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102107

RESUMEN

Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and ß-arrestin2 transducers, making their respective roles unclear. To elucidate this, we develop a series of 5-HT2A-selective ligands with varying Gq efficacies, including ß-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-ß-arrestin2 recruitment efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A Gq-efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that ß-arrestin-biased 5-HT2A receptor agonists block psychedelic effects and induce receptor downregulation and tachyphylaxis. Overall, 5-HT2A receptor Gq-signaling can be fine-tuned to generate ligands distinct from classical psychedelics.


Asunto(s)
Alucinógenos , Masculino , Animales , Ratones , Alucinógenos/farmacología , Receptor de Serotonina 5-HT2A , Serotonina , Transducción de Señal , beta-Arrestinas , Ligandos
5.
bioRxiv ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37577474

RESUMEN

Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and ß-arrestin2 signaling, making their respective roles unclear. To elucidate this, we developed a series of 5-HT2A-selective ligands with varying Gq efficacies, including ß-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-ß-arrestin2 efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A-Gq efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that ß-arrestin-biased 5-HT2A receptor agonists induce receptor downregulation and tachyphylaxis, and have an anti-psychotic-like behavioral profile. Overall, 5-HT2A receptor signaling can be fine-tuned to generate ligands with properties distinct from classical psychedelics.

6.
iScience ; 26(7): 107121, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37416459

RESUMEN

Synthetic opioids are increasingly challenging to combat the opioid epidemic and act primarily at opioid receptors, chiefly the G protein-coupled receptor (GPCR) µ-opioid receptor (MOR), which signals through G protein-dependent and ß-arrestin pathways. Using a bioluminescence resonance energy transfer (BRET) system, we investigate GPCR-signaling profiles by synthetic nitazenes, which are known to cause overdose and death due to respiratory depression. We show that isotonitazene and its metabolite, N-desethyl isotonitazene, are very potent MOR-selective superagonists, surpassing both DAMGO G protein and ß-arrestin recruitment activity, which are properties distinct from other conventional opioids. Both isotonitazene and N-desethyl isotonitazene show high potency in mouse analgesia tail-flick assays, but N-desethyl isotonitazene shows longer-lasting respiratory depression compared to fentanyl. Overall, our results suggest that potent MOR-selective superagonists may be a pharmacological property predictive of prolonged respiratory depression resulting in fatal consequences and should be examined for future opioid analgesics.

7.
Cell Rep ; 42(3): 112203, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36884348

RESUMEN

Hallucinations limit widespread therapeutic use of psychedelics as rapidly acting antidepressants. Here we profiled the non-hallucinogenic lysergic acid diethylamide (LSD) analog 2-bromo-LSD (2-Br-LSD) at more than 33 aminergic G protein-coupled receptors (GPCRs). 2-Br-LSD shows partial agonism at several aminergic GPCRs, including 5-HT2A, and does not induce the head-twitch response (HTR) in mice, supporting its classification as a non-hallucinogenic 5-HT2A partial agonist. Unlike LSD, 2-Br-LSD lacks 5-HT2B agonism, an effect linked to cardiac valvulopathy. Additionally, 2-Br-LSD produces weak 5-HT2A ß-arrestin recruitment and internalization in vitro and does not induce tolerance in vivo after repeated administration. 2-Br-LSD induces dendritogenesis and spinogenesis in cultured rat cortical neurons and increases active coping behavior in mice, an effect blocked by the 5-HT2A-selective antagonist volinanserin (M100907). 2-Br-LSD also reverses the behavioral effects of chronic stress. Overall, 2-Br-LSD has an improved pharmacological profile compared with LSD and may have profound therapeutic value for mood disorders and other indications.


Asunto(s)
Alucinógenos , Dietilamida del Ácido Lisérgico , Ratas , Ratones , Animales , Dietilamida del Ácido Lisérgico/farmacología , Dietilamida del Ácido Lisérgico/uso terapéutico , Serotonina , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Piperidinas/farmacología
8.
Drug Test Anal ; 15(3): 277-291, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36321499

RESUMEN

The development of novel lysergamides continues to occur, based on both the needs of psychedelic medicine and commercial interest in new recreational substances. The present study continues the authors' research on novel lysergamides and describes the analytical profile of 1-cyclopropanoyl-AL-LAD (IUPAC name: 1-(cyclopropanecarbonyl)-N,N-diethyl-6-(prop-2-en-1-yl)-9,10-didehydroergoline-8ß-carboxamide; 1cP-AL-LAD), using various chromatographic, mass spectrometric, and spectroscopic methods. Analysis of a powdered sample of 1cP-AL-LAD, obtained from an online vendor, by high performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry in full scan/AutoMS/MS mode revealed the detection of 17 impurities based on high-resolution tandem mass spectral data; tentative determination of their identity was based on mass spectral grounds alone, though detection of AL-LAD and 1P-AL-LAD was confirmed using available reference standards. Other tentative compound identifications included 1-acetyl-AL-LAD and several other substances potentially reflecting oxidation of the N6 -allyl group as well as other positions on the ergoline ring system. These data may assist those interested in the chemistry of lysergamides. Finally, 1cP-AL-LAD was also detected in samples of "blotters" sold online for recreational use.


Asunto(s)
Alucinógenos , Dietilamida del Ácido Lisérgico , Dietilamida del Ácido Lisérgico/química , Alucinógenos/química , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos
9.
Psychopharmacology (Berl) ; 240(1): 115-126, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36477925

RESUMEN

RATIONALE: 4-Thio-substituted phenylalkylamines such as 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2) and 2,5-dimethoxy-4-n-propylthiophenethylamine (2C-T-7) produce psychedelic effects in humans and have been distributed as recreational drugs. OBJECTIVES: The present studies were conducted to examine the structure-activity relationships (SAR) of a series of 4-thio-substituted phenylalkylamines using the head twitch response (HTR), a 5-HT2A receptor-mediated behavior induced by psychedelic drugs in mice. The HTR is commonly used as a behavioral proxy in rodents for human psychedelic effects and can be used to discriminate hallucinogenic and non-hallucinogenic 5-HT2A agonists. METHODS: HTR dose-response studies with twelve different 4-thio-substituted phenylalkylamines were conducted in male C57BL/6 J mice. To detect the HTR, head movement was recorded electronically using a magnetometer coil and then head twitches were identified in the recordings using a validated method based on artificial intelligence. RESULTS: 2C-T, the parent compound of this series, had relatively low potency in the HTR paradigm, but adding an α-methyl group increased potency fivefold. Potency was also increased when the 4-methylthio group was extended by one to three methylene units. Fluorination of the 4-position alkylthio chain, however, was detrimental for activity, as was the presence of a 4-allylthio substituent versus a propylthio group. 2C-T analogs containing a 4-benzylthio group showed little or no effect in the HTR paradigm, which is consistent with evidence that bulky 4-substituents can dampen agonist efficacy at the 5-HT2A receptor. Binding and functional studies confirmed that the compounds have nanomolar affinity for 5-HT2 receptor subtypes and act as partial agonists at 5-HT2A. CONCLUSIONS: In general, there were close parallels between the HTR data and the known SAR governing activity of phenylalkylamines at the 5-HT2A receptor. These findings further support the classification of 2C-T compounds as psychedelic drugs.


Asunto(s)
Alucinógenos , Ratones , Masculino , Humanos , Animales , Alucinógenos/farmacología , Alucinógenos/química , Receptor de Serotonina 5-HT2A , Inteligencia Artificial , Serotonina , Ratones Endogámicos C57BL , Relación Estructura-Actividad
10.
Drug Test Anal ; 14(8): 1503-1518, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35524430

RESUMEN

Lysergic acid diethylamide (LSD) is known to induce powerful psychoactive effects in humans, which cemented its status as an important tool for clinical research. A range of analogues and derivatives has been investigated over the years, including those classified as new psychoactive substances. This study presents the characterization of the novel lysergamide N,N-diethyl-1-propanoyl-6-(prop-2-en-1-yl)-9,10-didehydroergoline-8ß-carboxamide (1P-AL-LAD) using various mass spectrometric, gas- and liquid chromatographic and spectroscopic methods. In vitro metabolism studies using pooled human liver microsomes (pHLM) confirmed that 1P-AL-LAD converted to AL-LAD as the most abundant metabolite consistent with the hypothesis that 1P-AL-LAD may act as a prodrug. Fourteen metabolites were detected in total; metabolic reactions included hydroxylation of the core lysergamide ring structure or the N6 -allyl group, formation of dihydrodiol metabolites, N-dealkylation, N1 -deacylation, dehydrogenation, and combinations thereof. The in vivo behavioral activity of 1P-AL-LAD was evaluated using the mouse head twitch response (HTR), a 5-HT2A -mediated head movement that serves as a behavioral proxy in rodents for human hallucinogenic effects. 1P-AL-LAD induced a dose-dependent increase in HTR counts with an inverted U-shaped dose-response function, similar to lysergic acid diethylamide (LSD), psilocybin, and other psychedelics. Following intraperitoneal injection, the median effective dose (ED50 ) for 1P-AL-LAD was 491 nmol/kg, making it almost three times less potent than AL-LAD (174.9 nmol/kg). Previous studies have shown that N1 -substitution disrupts the ability of lysergamides to activate the 5-HT2A receptor; based on the in vitro metabolism data, 1P-AL-LAD may induce the HTR because it acts as a prodrug and is metabolized to AL-LAD after administration to mice.


Asunto(s)
Alucinógenos , Profármacos , Animales , Cromatografía Liquida/métodos , Alucinógenos/química , Alucinógenos/farmacología , Humanos , Dietilamida del Ácido Lisérgico/análogos & derivados , Ratones
11.
Neuropsychopharmacology ; 47(4): 914-923, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34750565

RESUMEN

Derivatives of (2-aminopropyl)indole (API) and (2-aminopropyl)benzofuran (APB) are new psychoactive substances which produce stimulant effects in vivo. (2-Aminopropyl)benzo[ß]thiophene (APBT) is a novel sulfur-based analog of API and APB that has not been pharmacologically characterized. In the current study, we assessed the pharmacological effects of six APBT positional isomers in vitro, and three of these isomers (3-APBT, 5-APBT, and 6-APBT) were subjected to further investigations in vivo. Uptake inhibition and efflux assays in human transporter-transfected HEK293 cells and in rat brain synaptosomes revealed that APBTs inhibit monoamine reuptake and induce transporter-mediated substrate release. Despite being nonselective transporter releasers like MDMA, the APBT compounds failed to produce locomotor stimulation in C57BL/6J mice. Interestingly, 3-APBT, 5-APBT, and 6-APBT were full agonists at 5-HT2 receptor subtypes as determined by calcium mobilization assays and induced the head-twitch response in C57BL/6J mice, suggesting psychedelic-like activity. Compared to their APB counterparts, ABPT compounds demonstrated that replacing the oxygen atom with sulfur results in enhanced releasing potency at the serotonin transporter and more potent and efficacious activity at 5-HT2 receptors, which fundamentally changed the in vitro and in vivo profile of APBT isomers in the present studies. Overall, our data suggest that APBT isomers may exhibit psychedelic and/or entactogenic effects in humans, with minimal psychomotor stimulation. Whether this unique pharmacological profile of APBT isomers translates into potential therapeutic potential, for instance as candidates for drug-assisted psychotherapy, warrants further investigation.


Asunto(s)
Alucinógenos , Animales , Células HEK293 , Alucinógenos/farmacología , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratas , Tiofenos/farmacología
12.
Drug Test Anal ; 14(4): 733-740, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34837347

RESUMEN

The psychopharmacological properties of the psychedelic drug lysergic acid diethylamide (LSD) have attracted the interest of several generations of scientists. While further explorations involving novel LSD-type compounds are needed to assess their potential as medicinal drugs, the emergence of novel derivatives as recreational drugs has also been observed. 1-Valeroyl-LSD (also known as 1-valeryl-LSD, 1-pentanoyl-LSD, 1V-LSD, or "Valerie") is a new N1 -acylated LSD derivative that recently appeared on the online market, and it could be viewed as a higher homolog of ALD-52, 1P-LSD, and 1B-LSD. The present study included the analytical characterization and involved various methods of mass spectrometry (MS), gas and liquid chromatography (GC and LC), nuclear magnetic resonance (NMR) spectroscopy, GC-solid-state infrared (GC-sIR) analysis, and Raman spectroscopy. The in vivo activity of 1V-LSD was assessed using the mouse head-twitch response (HTR), a 5-HT2A -mediated head movement that serves as a behavioral proxy in rodents for human hallucinogenic effects. Similar to LSD and other psychedelic drugs, the HTR induced by 1V-LSD was dose dependent, and the median effective dose for 1V-LSD was 373 nmol/kg, which was about a third of the potency of LSD (ED50  = 132.8 nmol/kg). Lysergamides containing the N1 -substituent typically act as weak partial agonists at the 5-HT2A receptor and are believed to serve as prodrugs for LSD. 1V-LSD is also likely to be hydrolyzed to LSD and serve as a prodrug, but studies to assess the biotransformation and receptor pharmacology of 1V-LSD should be performed to fully elucidate its mechanism of action.


Asunto(s)
Alucinógenos , Drogas Ilícitas , Profármacos , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Alucinógenos/química , Dietilamida del Ácido Lisérgico , Espectroscopía de Resonancia Magnética/métodos , Ratones
13.
Int J Neuropsychopharmacol ; 24(11): 894-906, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34338765

RESUMEN

BACKGROUND: HIV-associated neurocognitive disorder (HAND) is commonly observed in persons living with HIV (PWH) and is characterized by cognitive deficits implicating disruptions of fronto-striatal neurocircuitry. Such circuitry is also susceptible to alteration by cannabis and other drugs of abuse. PWH use cannabis at much higher rates than the general population, thus prioritizing the characterization of any interactions between HIV and cannabinoids on cognitively relevant systems. Prepulse inhibition (PPI) of the startle response, the process by which the motor response to a startling stimulus is attenuated by perception of a preceding non-startling stimulus, is an operational assay of fronto-striatal circuit integrity that is translatable across species. PPI is reduced in PWH. The HIV transgenic (HIVtg) rat model of HIV infection mimics numerous aspects of HAND, although to date the PPI deficit observed in PWH has yet to be fully recreated in animals. METHODS: PPI was measured in male and female HIVtg rats and wild-type controls following acute, nonconcurrent treatment with the primary constituents of cannabis: Δ 9-tetrahydrocannabinol (THC; 1 and 3 mg/kg, s.c.) and cannabidiol (1, 10, and 30 mg/kg, i.p.). RESULTS: HIVtg rats exhibited a significant PPI deficit relative to wild-type controls. THC reduced PPI in controls but not HIVtg rats. Cannabidiol exerted only minor, genotype-independent effects on PPI. CONCLUSIONS: HIVtg rats exhibit a relative insensitivity to the deleterious effects of THC on the fronto-striatal function reflected by PPI, which may partially explain the higher rates of cannabis use among PWH.


Asunto(s)
Cannabinoides/farmacología , Infecciones por VIH/fisiopatología , Filtrado Sensorial/efectos de los fármacos , Estimulación Acústica , Animales , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Femenino , Alucinógenos/farmacología , Masculino , Inhibición Prepulso/efectos de los fármacos , Ratas , Ratas Transgénicas , Reflejo de Sobresalto/efectos de los fármacos
14.
ACS Pharmacol Transl Sci ; 4(2): 533-542, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860183

RESUMEN

The 5-HT2A receptor is thought to be the primary target for psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) and other serotonergic hallucinogens (psychedelic drugs). Although a large amount of experimental work has been conducted to characterize the pharmacology of psilocybin and its dephosphorylated metabolite psilocin (4-hydroxy-N,N-dimethyltryptamine), there has been little systematic investigation of the structure-activity relationships (SAR) of 4-substituted tryptamine derivatives. In addition, structural analogs of psilocybin containing a 4-acetoxy group, such as 4-acetoxy-N,N-dimethyltryptamine (4-AcO-DMT), have appeared as new designer drugs, but almost nothing is known about their pharmacological effects. To address the gap of information, studies were conducted with 17 tryptamines containing a variety of symmetrical and asymmetrical N,N-dialkyl substituents and either a 4-hydroxy or 4-acetoxy group. Calcium mobilization assays were conducted to assess functional activity at human and mouse 5-HT2 subtypes. Head-twitch response (HTR) studies were conducted in C57BL/6J mice to assess 5-HT2A activation in vivo. All of the compounds acted as full or partial agonists at 5-HT2 subtypes, displaying similar potencies at 5-HT2A and 5-HT2B receptors, but some tryptamines with bulkier N-alkyl groups had lower potency at 5-HT2C receptors and higher 5-HT2B receptor efficacy. In addition, O-acetylation reduced the in vitro 5-HT2A potency of 4-hydroxy-N,N-dialkyltryptamines by about 10- to 20-fold but did not alter agonist efficacy. All of the compounds induce head twitches in mice, consistent with an LSD-like behavioral profile. In contrast to the functional data, acetylation of the 4-hydroxy group had little effect on HTR potency, suggesting that O-acetylated tryptamines may be deacetylated in vivo, acting as prodrugs. In summary, the tryptamine derivatives have psilocybin-like pharmacological properties, supporting their classification as psychedelic drugs.

15.
J Nat Prod ; 84(4): 1403-1408, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33667102

RESUMEN

A novel analogue of psilocybin was produced by hybrid chemoenzymatic synthesis in sufficient quantity to enable bioassay. Utilizing purified 4-hydroxytryptamine kinase from Psilocybe cubensis, chemically synthesized 5-methylpsilocin (2) was enzymatically phosphorylated to provide 5-methylpsilocybin (1). The zwitterionic product was isolated from the enzymatic step with high purity utilizing a solvent-antisolvent precipitation approach. Subsequently, 1 was tested for psychedelic-like activity using the mouse head-twitch response assay, which indicated activity that was more potent than the psychedelic dimethyltryptamine, but less potent than that of psilocybin.


Asunto(s)
Alucinógenos/síntesis química , Psilocibina/síntesis química , Triptaminas/síntesis química , Animales , Ratones , Estructura Molecular , Psilocybe , Psilocibina/análogos & derivados
16.
Pharmacol Rev ; 73(1): 310-520, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33370241

RESUMEN

5-HT receptors expressed throughout the human body are targets for established therapeutics and various drugs in development. Their diversity of structure and function reflects the important role 5-HT receptors play in physiologic and pathophysiological processes. The present review offers a framework for the official receptor nomenclature and a detailed understanding of each of the 14 5-HT receptor subtypes, their roles in the systems of the body, and, where appropriate, the (potential) utility of therapeutics targeting these receptors. SIGNIFICANCE STATEMENT: This review provides a comprehensive account of the classification and function of 5-hydroxytryptamine receptors, including how they are targeted for therapeutic benefit.


Asunto(s)
Farmacología Clínica , Serotonina , Humanos , Ligandos , Receptores de Serotonina
17.
Schizophr Bull ; 46(6): 1396-1408, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32944778

RESUMEN

The recent renaissance of psychedelic science has reignited interest in the similarity of drug-induced experiences to those more commonly observed in psychiatric contexts such as the schizophrenia-spectrum. This report from a multidisciplinary working group of the International Consortium on Hallucinations Research (ICHR) addresses this issue, putting special emphasis on hallucinatory experiences. We review evidence collected at different scales of understanding, from pharmacology to brain-imaging, phenomenology and anthropology, highlighting similarities and differences between hallucinations under psychedelics and in the schizophrenia-spectrum disorders. Finally, we attempt to integrate these findings using computational approaches and conclude with recommendations for future research.


Asunto(s)
Alucinaciones/fisiopatología , Alucinógenos/efectos adversos , Red Nerviosa/fisiopatología , Esquizofrenia/fisiopatología , Alucinaciones/inducido químicamente , Alucinaciones/diagnóstico por imagen , Alucinaciones/etiología , Humanos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/efectos de los fármacos , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen
18.
Drug Test Anal ; 12(10): 1514-1521, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32803833

RESUMEN

Recent investigations have shown that N-ethyl-N-cyclopropyl lysergamide (ECPLA) produces LSD-like behavioral effects in mice, which suggests that it may act as a hallucinogen in humans. Although the use of ECPLA as a recreational drug has been limited, key analytical data that can be used to detect ECPLA are required for future forensic and clinical investigations. ECPLA is an isomer of (2'S,4'S)-lysergic acid 2,4-dimethylazetidide (LSZ), a lysergamide that emerged as a recreational drug in 2013. Several analytical approaches were examined, including single- and tandem mass spectrometry platforms at low and high resolution, gas- and liquid chromatography (GC, LC), nuclear magnetic resonance spectroscopy (NMR), and GC condensed-phase infrared spectroscopy (GC-sIR). ECPLA and LSZ could be differentiated by NMR, GC-sIR, GC, and LC-based methods. The electron ionization mass spectra of ECPLA and LSZ contained ion clusters typically observed with related lysergamides such as m/z 150-155, m/z 177-182, m/z 191-197, m/z 205-208, and m/z 219-224. One of the significant differences in abundance related to these clusters included ions at m/z 196 and m/z 207/208. The base peaks were detected at m/z 221 in both cases followed by the retro-Diels-Alder fragment at m/z 292. Minor but noticeable differences between the two isomers could also be seen in the relative abundance of m/z 98 and m/z 41. Electrospray ionization mass spectra included lysergamide-related ions at m/z 281, 251, 223, 208, 197, 180, and 140. LSZ (but not ECPLA) showed product ions at m/z 267 and m/z 98 under the conditions used.


Asunto(s)
Drogas Ilícitas/química , Ácido Lisérgico/análogos & derivados , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Isomerismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
19.
Behav Brain Res ; 395: 112861, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814148

RESUMEN

Serotonin 2A (5-HT2A) receptors are the primary site of action of hallucinogenic drugs and the target of atypical antipsychotics. 5-HT2A receptors are also implicated in executive function, including behavioral flexibility. Previous studies showed that 5-HT2A receptor blockade improved behavioral flexibility in rodent models related to autism spectrum disorder and schizophrenia. The current study instead was conducted to examine the impact of acute 5-HT2A receptor activation on behavior flexibility in the control C57BL/6 J strain. Because of the therapeutic potential of serotonergic hallucinogens and the unknown impact of many of these compounds on cognition, the present study examined how the 5-HT2A/2C agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and the more selective 5-HT2A agonist 25CN-NBOH impacted behavioral flexibility in C57BL/6 J mice. Male mice were tested on a probabilistic spatial discrimination and reversal learning task after an intraperitoneal injection of vehicle, 2.5 mg/kg DOI, 1.0 mg/kg 25CN-NBOH, 1.0 mg/kg of the 5-HT2C receptor antagonist SER-082 or combined treatment with SER-082 (1.0 mg/kg) and 2.5 mg/kg DOI before testing of probabilistic reversal learning. All groups demonstrated comparable performance on the initial spatial discrimination, i.e. similar trials to criterion. DOI alone did not impair reversal learning, whereas 25CN-NBOH increased the number of trials to criterion during reversal learning. Because 5-HT2A and 5-HT2C receptors have been shown to functionally antagonize each other in several behavioral paradigms, we also tested whether blockade of 5-HT2C receptors would unmask 5-HT2A receptor activation by DOI and impair reversal learning. Mice treated with SER-082 in combination with DOI required significantly more trials to reach criterion. In an additional experiment, a dose response experiment with 25CN-NBOH revealed that the 1.0 mg/kg dose tested in reversal learning did not affect locomotor activity. Together, these findings indicate that activation of 5-HT2A receptors impairs probabilistic reversal learning and that 5-HT2A and 5-HT2C receptors exert opposing effects on behavioral flexibility in male mice.


Asunto(s)
Adaptación Fisiológica/fisiología , Receptor de Serotonina 5-HT2A/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Anfetaminas/farmacología , Animales , Trastorno del Espectro Autista/fisiopatología , Conducta Animal/fisiología , Bencilaminas/farmacología , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fenetilaminas/farmacología , Receptor de Serotonina 5-HT2A/fisiología , Receptor de Serotonina 5-HT2C/metabolismo , Receptor de Serotonina 5-HT2C/fisiología , Aprendizaje Inverso/efectos de los fármacos , Serotonina/farmacología , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Conducta Espacial/efectos de los fármacos
20.
Sci Rep ; 10(1): 8344, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433580

RESUMEN

Hallucinogens induce the head-twitch response (HTR), a rapid reciprocal head movement, in mice. Although head twitches are usually identified by direct observation, they can also be assessed using a head-mounted magnet and a magnetometer. Procedures have been developed to automate the analysis of magnetometer recordings by detecting events that match the frequency, duration, and amplitude of the HTR. However, there is considerable variability in the features of head twitches, and behaviors such as jumping have similar characteristics, reducing the reliability of these methods. We have developed an automated method that can detect head twitches unambiguously, without relying on features in the amplitude-time domain. To detect the behavior, events are transformed into a visual representation in the time-frequency domain (a scalogram), deep features are extracted using the pretrained convolutional neural network (CNN) ResNet-50, and then the images are classified using a Support Vector Machine (SVM) algorithm. These procedures were used to analyze recordings from 237 mice containing 11,312 HTR. After transformation to scalograms, the multistage CNN-SVM approach detected 11,244 (99.4%) of the HTR. The procedures were insensitive to other behaviors, including jumping and seizures. Deep learning based on scalograms can be used to automate HTR detection with robust sensitivity and reliability.


Asunto(s)
Técnicas de Observación Conductual/métodos , Alucinógenos/farmacología , Movimientos de la Cabeza/efectos de los fármacos , Máquina de Vectores de Soporte , Animales , Técnicas de Observación Conductual/instrumentación , Conducta Animal/efectos de los fármacos , Evaluación Preclínica de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Magnetometría/instrumentación , Magnetometría/métodos , Imanes , Masculino , Ratones , Modelos Animales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...