Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Clin Chem Lab Med ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38353147

RESUMEN

OBJECTIVES: Increased levels of glial fibrillary acidic protein (GFAP) in blood have been identified as a valuable biomarker for some neurological disorders, such as Alzheimer's disease and multiple sclerosis. However, most blood GFAP quantifications so far were performed using the same bead-based assay, and to date a routine clinical application is lacking. METHODS: In this study, we validated a novel second-generation (2nd gen) Ella assay to quantify serum GFAP. Furthermore, we compared its performance with a bead-based single molecule array (Simoa) and a homemade GFAP assay in a clinical cohort of neurological diseases, including 210 patients. RESULTS: Validation experiments resulted in an intra-assay variation of 10 %, an inter-assay of 12 %, a limit of detection of 0.9 pg/mL, a lower limit of quantification of 2.8 pg/mL, and less than 20 % variation in serum samples exposed to up to five freeze-thaw cycles, 120 h at 4 °C and room temperature. Measurement of the clinical cohort using all assays revealed the same pattern of GFAP distribution in the different diagnostic groups. Moreover, we observed a strong correlation between the 2nd gen Ella and Simoa (r=0.91 (95 % CI: 0.88-0.93), p<0.0001) and the homemade immunoassay (r=0.77 (95 % CI: 0.70-0.82), p<0.0001). CONCLUSIONS: Our results demonstrate a high reliability, precision and reproducibility of the 2nd gen Ella assay. Although a higher assay sensitivity for Simoa was observed, the new microfluidic assay might have the potential to be used for GFAP analysis in daily clinical workups due to its robustness and ease of use.

2.
Clin Chem Lab Med ; 62(2): 322-331, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37702323

RESUMEN

OBJECTIVES: Neurofilament light chain (NfL) has emerged as a promising biomarker for detecting and monitoring axonal injury. Until recently, NfL could only be reliably measured in cerebrospinal fluid, but digital single molecule array (Simoa) technology has enabled its precise measurement in blood samples where it is typically 50-100 times less abundant. We report development and multi-center validation of a novel fully automated digital immunoassay for NfL in serum for informing axonal injury status. METHODS: A 45-min immunoassay for serum NfL was developed for use on an automated digital analyzer based on Simoa technology. The analytical performance (sensitivity, precision, reproducibility, linearity, sample type) was characterized and then cross validated across 17 laboratories in 10 countries. Analytical performance for clinical NfL measurement was examined in individual patients with relapsing remitting multiple sclerosis (RRMS) after 3 months of disease modifying treatment (DMT) with fingolimod. RESULTS: The assay exhibited a lower limit of detection (LLoD) of 0.05 ng/L, a lower limit of quantification (LLoQ) of 0.8 ng/L, and between-laboratory imprecision <10 % across 17 validation sites. All tested samples had measurable NfL concentrations well above the LLoQ. In matched pre-post treatment samples, decreases in NfL were observed in 26/29 RRMS patients three months after DMT start, with significant decreases detected in a majority of patients. CONCLUSIONS: The sensitivity characteristics and reproducible performance across laboratories combined with full automation make this assay suitable for clinical use for NfL assessment, monitoring in individual patients, and cross-comparisons of results across multiple sites.


Asunto(s)
Filamentos Intermedios , Neuronas , Humanos , Reproducibilidad de los Resultados , Inmunoensayo , Proteínas de Neurofilamentos , Biomarcadores , Pruebas Hematológicas
3.
Sci Rep ; 13(1): 20941, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017278

RESUMEN

We aimed to assess the prognostic value of serum ß-synuclein (ß-syn), neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in patients with moderate-to-severe acute ischemic stroke. We measured ß-syn, GFAP and NfL in serum samples collected one day after admission in 30 adult patients with moderate-to-severe ischemic stroke due to middle cerebral artery (MCA) occlusion. We tested the associations between biomarker levels and clinical and radiological scores (National Institute of Health Stroke Scale scores, NIHSS, and Alberta Stroke Program Early CT Score, ASPECTS), as well as measures of functional outcome (modified Rankin Scale, mRS). Serum biomarkers were significantly associated with ASPECTS values (ß-syn p = 0.0011, GFAP p = 0.0002) but not with NIHSS scores at admission. Patients who received mechanical thrombectomy and intravenous thrombolysis showed lower ß-syn (p = 0.029) und NfL concentrations (p = 0.0024) compared to patients who received only mechanical thrombectomy. According to median biomarker levels, patients with high ß-syn, NfL or GFAP levels showed, after therapy, lower clinical improvement (i.e., lower 24-h NIHSS change), higher NIHSS scores during hospitalization and higher mRS scores at 3-month follow-up. Elevated serum concentrations of ß-syn (p = 0.016), NfL (p = 0.020) or GFAP (p = 0.010) were significantly associated with 3-month mRS of 3-6 vs. 0-2 even after accounting for age, sex and renal function. In patients with moderate-to-severe acute ischemic stroke, serum ß-syn, NfL and GFAP levels associated with clinical and radiological scores at different timepoints and were able to predict short- and middle-term clinical outcomes.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Adulto , Humanos , Sinucleína beta , Biomarcadores , Proteína Ácida Fibrilar de la Glía , Infarto de la Arteria Cerebral Media , Filamentos Intermedios , Proteínas de Neurofilamentos , Pronóstico , Accidente Cerebrovascular/terapia
4.
Ann Clin Transl Neurol ; 10(10): 1924-1930, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37608748

RESUMEN

We analyzed the longitudinal concentrations and prognostic roles of plasma ß-synuclein (ß-syn), glial fibrillary acidic protein (GFAP), and neurofilament proteins (NfL and NfH) in 33 patients with malignant gliomas, who underwent surgical and adjuvant therapy. GFAP and NfL levels were increased in patients with glioblastoma compared to cases with other tumors. ß-syn, NfL and NfH increased after surgery, whereas GFAP decreased at long-term follow-up. ß-syn and neurofilament concentrations were influenced by surgery and/or radiotherapy regimens. GFAP and neurofilament levels were significantly associated with survival. Plasma neuronal and astrocytic biomarkers are differentially altered in malignant glioma types and displayed distinct trajectories after surgical and adjuvant therapy.


Asunto(s)
Glioma , Filamentos Intermedios , Humanos , Proteína Ácida Fibrilar de la Glía , Filamentos Intermedios/metabolismo , Sinucleína beta , Biomarcadores , Glioma/cirugía
5.
Heliyon ; 9(8): e18443, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37609390

RESUMEN

Disease-modifying therapies to treat Alzheimer's disease (AD) are of fundamental interest for aging humans, societies, and health care systems. Predictable disease progression in transgenic AD models favors preclinical studies employing a preventive study design with an early pre-symptomatic treatment start, instead of assessing a truly curative approach with treatment starting after diagnosed disease onset. The aim of this study was to investigate the pharmacokinetic profile and efficacy of RD2 to enhance short-term memory and cognition in cognitively impaired aged Beagle dogs - a non-transgenic model of truly sporadic AD. RD2 has previously demonstrated pharmacodynamic efficacy in three different transgenic AD mouse models in three different laboratories. Here, we demonstrate that oral treatment with RD2 significantly reduced cognitive deficits in cognitively impaired aged Beagle dogs even beyond the treatment end, which suggests in combination with the treatment dependent CSF tau oligomer decrease a disease-modifying effect of RD2 treatment.

6.
Ann Clin Transl Neurol ; 10(10): 1904-1909, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37553789

RESUMEN

Beta-synuclein is a promising cerebrospinal fluid and blood biomarker of synaptic damage. Here we analysed its accuracy in the discrimination between sporadic Creutzfeldt-Jakob disease (n = 150) and non-prion rapidly progressive dementias (n = 106). In cerebrospinal fluid, beta-synuclein performed better than protein 14-3-3 (AUC 0.95 vs. 0.89) and, to a lesser extent, than total tau (AUC 0.92). Further, the diagnostic value of plasma beta-synuclein (AUC 0.91) outperformed that of plasma tau (AUC 0.79) and neurofilament light chain protein (AUC 0.65) and was comparable to that of cerebrospinal fluid biomarkers. Beta-synuclein might represent the first highly accurate blood biomarker for the diagnosis of sporadic Creutzfeldt-Jakob disease.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Sinucleína beta , Proteínas 14-3-3/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
7.
Mol Cell Proteomics ; 22(10): 100629, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37557955

RESUMEN

Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Encéfalo , Biomarcadores , Neuronas , Medicina de Precisión , Péptidos beta-Amiloides
8.
Front Mol Biosci ; 10: 1175230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168256

RESUMEN

Introduction: A rapid and reliable detection of glial fibrillary acidic protein (GFAP) in biological samples could assist in the diagnostic evaluation of neurodegenerative disorders. Sensitive assays applicable in the routine setting are needed to validate the existing GFAP tests. This study aimed to develop a highly sensitive and clinically applicable microfluidic immunoassay for the measurement of GFAP in blood. Methods: A microfluidic GFAP assay was developed and validated regarding its performance. Subsequently, serum and cerebrospinal fluid (CSF) of Alzheimer's disease (AD), Multiple Sclerosis (MS) and control patients were analyzed with the established assay, and levels were compared to the commercial GFAP Simoa discovery kit. Results: The developed GFAP assay showed a good performance with a recovery of 85% of spiked GFAP in serum and assay variations below 15%. The established assay was highly sensitive with a calculated lower limit of quantification and detection of 7.21 pg/mL and 2.37 pg/mL, respectively. GFAP levels were significantly increased in AD compared to control patients with advanced age (p = 0.002). However, GFAP levels revealed no significant increase in MS compared to control patients in the same age range (p = 0.140). Furthermore, serum GFAP levels evaluated with the novel microfluidic assay strongly correlated with Simoa concentrations (r = 0.88 (95% CI: 0.81-0.93), p < 0.0001). Conclusion: We successfully developed a sensitive and easy-to-use microfluidic assay to measure GFAP in blood. Furthermore, we could confirm previous findings of elevated GFAP levels in AD by applying the assay in a cohort of clinically characterized patients.

9.
Neurology ; 101(1): e50-e62, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37188538

RESUMEN

BACKGROUND AND OBJECTIVES: Patients with Lewy body disease (LBD) often show a co-occurring Alzheimer disease (AD) pathology. CSF biomarkers allow the detection in vivo of AD-related pathologic hallmarks included in the amyloid-tau-neurodegeneration (AT(N)) classification system. Here, we aimed to investigate whether CSF biomarkers of synaptic and neuroaxonal damage are correlated with the presence of AD copathology in LBD and can be useful to differentiate patients with LBD with different AT(N) profiles. METHODS: We retrospectively measured CSF levels of AD core biomarkers (Aß42/40 ratio, phosphorylated tau protein, and total tau protein) and of synaptic (ß-synuclein, α-synuclein, synaptosomal-associated protein 25 [SNAP-25], and neurogranin) and neuroaxonal proteins (neurofilament light chain [NfL]) in 28 cognitively unimpaired participants with nondegenerative neurologic conditions and 161 participants with a diagnosis of either LBD or AD (at both mild cognitive impairment, AD-MCI, and dementia stages, AD-dem). We compared CSF biomarker levels in clinical and AT(N)-based subgroups. RESULTS: CSF ß-synuclein, α-synuclein, SNAP-25, neurogranin, and NfL levels did not differ between LBD (n = 101, age 67.2 ± 7.8 years, 27.7% females) and controls (age 64.8 ± 8.6 years, 39.3% females) and were increased in AD (AD-MCI: n = 30, AD-dem: n = 30, age 72.3 ± 6.0 years, 63.3% females) compared with both groups (p < 0.001 for all comparisons). In LBD, we found increased levels of synaptic and neuroaxonal degeneration biomarkers in patients with A+T+ (LBD/A+T+) than with A-T- profiles (LBD/A-T-) (p < 0.01 for all), and ß-synuclein showed the highest discriminative accuracy between the 2 groups (area under the curve 0.938, 95% CI 0.884-0.991). CSF ß-synuclein (p = 0.0021), α-synuclein (p = 0.0099), and SNAP-25 concentrations (p = 0.013) were also higher in LBD/A+T+ than in LBD/A+T- cases, which had synaptic biomarker levels within the normal range. CSF α-synuclein was significantly decreased only in patients with LBD with T- profiles compared with controls (p = 0.0448). Moreover, LBD/A+T+ and AD cases did not differ in any biomarker level. DISCUSSION: LBD/A+T+ and AD cases showed significantly increased CSF levels of synaptic and neuroaxonal biomarkers compared with LBD/A-T- and control subjects. Patients with LBD and AT(N)-based AD copathology showed, thus, a distinct signature of synaptic dysfunction from other LBD cases. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that CSF levels of ß-synuclein, α-synuclein, SNAP-25, neurogranin, and NfL are higher in patients with AD than in patients with LBD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Femenino , Humanos , Persona de Mediana Edad , Anciano , Masculino , Proteínas tau , alfa-Sinucleína , Sinucleína beta , Estudios Retrospectivos , Neurogranina , Enfermedad de Alzheimer/patología , Biomarcadores , Péptidos beta-Amiloides
10.
Alzheimers Dement ; 19(11): 5095-5102, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37186338

RESUMEN

INTRODUCTION: ß-Synuclein is an emerging synaptic blood biomarker for Alzheimer's disease (AD) but differences in ß-synuclein levels in preclinical AD and its association with amyloid and tau pathology have not yet been studied. METHODS: We measured plasma ß-synuclein levels in cognitively unimpaired individuals with positive Aß-PET (i.e., preclinical AD, N = 48) or negative Aß-PET (N = 61), Aß-positive patients with mild cognitive impairment (MCI, N = 36), and Aß-positive AD dementia (N = 85). Amyloid (A) and tau (T) pathology were assessed by [18 F]flutemetamol and [18 F]RO948 PET. RESULTS: Plasma ß-synuclein levels were higher in preclinical AD and even higher in MCI and AD dementia. Stratification according to amyloid/tau pathology revealed higher ß-synuclein in A+ T- and A+ T+ subjects compared with A- T- . Plasma ß-synuclein levels were related to tau and Aß pathology and associated with temporal cortical thinning and cognitive impairment. DISCUSSION: Our data indicate that plasma ß-synuclein might track synaptic dysfunction, even during the preclinical stages of AD. HIGHLIGHTS: Plasma ß-synuclein is already higher in preclinical AD. Plasma ß-synuclein is higher in MCI and AD dementia than in preclinical AD. Aß- and tau-PET SUVRs are associated with plasma ß-synuclein levels. Plasma ß-synuclein is already higher in tau-PET negative subjects. Plasma ß-synuclein is related to temporal cortical atrophy and cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau , Péptidos beta-Amiloides , Sinucleína beta , Disfunción Cognitiva/patología , Biomarcadores , Amiloide , Proteínas Amiloidogénicas , Tomografía de Emisión de Positrones
11.
Alzheimers Dement ; 19(11): 4896-4907, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37052206

RESUMEN

INTRODUCTION: ß-synuclein is an emerging blood biomarker to study synaptic degeneration in Alzheimer´s disease (AD), but its relation to amyloid-ß (Αß) pathology is unclear. METHODS: We investigated the association of plasma ß-synuclein levels with [18F] flutemetamol positron emission tomography (PET) in patients with AD dementia (n = 51), mild cognitive impairment (MCI-Aß+ n = 18, MCI- Aß- n = 30), non-AD dementias (n = 22), and non-demented controls (n = 5). RESULTS: Plasma ß-synuclein levels were higher in Aß+ (AD dementia, MCI-Aß+) than in Aß- subjects (non-AD dementias, MCI-Aß-) with good discrimination of Aß+ from Aß- subjects and prediction of Aß status in MCI individuals. A positive correlation between plasma ß-synuclein and Aß PET was observed in multiple cortical regions across all lobes. DISCUSSION: Plasma ß-synuclein demonstrated discriminative properties for Aß PET positive and negative subjects. Our data underline that ß-synuclein is not a direct marker of Aß pathology and suggest different longitudinal dynamics of synaptic degeneration versus amyloid deposition across the AD continuum. HIGHLIGHTS: Blood and CSF ß-synuclein levels are higher in Aß+ than in Aß- subjects. Blood ß-synuclein level correlates with amyloid PET positivity in multiple regions. Blood ß-synuclein predicts Aß status in MCI individuals.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Sinucleína beta , Encéfalo/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Tomografía de Emisión de Positrones/métodos , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Biomarcadores
12.
J Neurol Neurosurg Psychiatry ; 94(1): 83-86, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944974

RESUMEN

INTRODUCTION: ß-synuclein (ß-syn) is a presynaptic protein, whose cerebrospinal fluid (CSF) levels are increased in patients with Alzheimer's diseases (AD) showing mild cognitive impairment (MCI) and dementia (dem). Here, we aimed to investigate CSF ß-syn in subjects at different AD stages, including preclinical AD (pre-AD), and to compare its behaviour with another synaptic biomarker, α-synuclein (α-syn), and two biomarkers of neuro-axonal damage, namely neurofilament light chain protein (NfL) and total tau protein (t-tau). METHODS: We measured ß-syn, α-syn, t-tau and NfL in CSF of 75 patients with AD (pre-AD n=17, MCI-AD n=28, dem-AD n=30) and 35 controls (subjective memory complaints, SMC-Ctrl n=13, non-degenerative neurological disorders, Dis-Ctrl n=22). RESULTS: CSF ß-syn, α-syn, t-tau were significantly elevated in pre-AD patients compared with controls (p<0.0001, p=0.02 and p=0.0001, respectively), while NfL only increased in dem-AD (p=0.001). Pre-AD cases showed lower t-tau concentrations than MCI-AD (p=0.04) and dem-AD (p=0.01). CSF ß-syn had the best diagnostic performance for the discrimination of pre-AD subjects from all controls (area under the curve, AUC=0.97) and from SMC-Ctrl subjects (AUC=0.99). DISCUSSION: CSF ß-syn increases in the whole AD continuum since the preclinical stage and represents a promising biomarker of synaptic damage in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Sinucleína beta , Proteínas tau/líquido cefalorraquídeo , Disfunción Cognitiva/psicología , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo
13.
Alzheimers Dement ; 19(4): 1358-1371, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36129098

RESUMEN

BACKGROUND: Recent data support beta-synuclein as a blood biomarker to study synaptic degeneration in Alzheimer's disease (AD). METHODS: We provide a detailed comparison of serum beta-synuclein immunoprecipitation - mass spectrometry (IP-MS) with the established blood markers phosphorylated tau 181 (p-tau181) (Simoa) and neurofilament light (NfL) (Ella) in the German FTLD consortium cohort (n = 374) and its relation to brain atrophy (magnetic resonance imaging) and cognitive scores. RESULTS: Serum beta-synuclein was increased in AD but not in frontotemporal lobar degeneration (FTLD) syndromes. Beta-synuclein correlated with atrophy in temporal brain structures and was associated with cognitive impairment. Serum p-tau181 showed the most specific changes in AD but the lowest correlation with structural alterations. NfL was elevated in all diseases and correlated with frontal and temporal brain atrophy. DISCUSSION: Serum beta-synuclein changes differ from those of NfL and p-tau181 and are strongly related to AD, most likely reflecting temporal synaptic degeneration. Beta-synuclein can complement the existing panel of blood markers, thereby providing information on synaptic alterations. HIGHLIGHTS: Blood beta-synuclein is increased in Alzheimer's disease (AD) but not in frontotemporal lobar degeneration (FTLD) syndromes. Blood beta-synuclein correlates with temporal brain atrophy in AD. Blood beta-synuclein correlates with cognitive impairment in AD. The pattern of blood beta-synuclein changes in the investigated diseases is different to phosphorylated tau 181 (p-tau181) and neurofilament light (NfL).


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Enfermedad de Alzheimer/patología , Sinucleína beta , Proteínas tau , Degeneración Lobar Frontotemporal/patología , Encéfalo/patología , Biomarcadores , Atrofia/patología , Péptidos beta-Amiloides
14.
Alzheimers Res Ther ; 14(1): 175, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419075

RESUMEN

BACKGROUND: Visinin-like protein 1 (VILIP-1) belongs to the group of emerging biomarkers with the potential to support the early diagnosis of Alzheimer's disease (AD). However, studies investigating the differential diagnostic potential in cerebrospinal fluid (CSF) are rare and are not available for blood. METHODS: We set up a novel, sensitive single molecule array (Simoa) assay for the detection of VILIP-1 in CSF and serum. In total, paired CSF and serum samples from 234 patients were investigated: 73 AD, 18 behavioral variant frontotemporal dementia (bvFTD), 26 parkinsonian syndromes, 20 amyotrophic lateral sclerosis (ALS), 22 Creutzfeldt-Jakob disease (CJD), and 75 non-neurodegenerative control (Con) patients. The differential diagnostic potential of CSF and serum VILIP-1 was assessed using the receiver operating characteristic curve analysis and findings were compared to core AD biomarkers. RESULTS: CSF and serum VILIP-1 levels correlated weakly (r=0.32 (CI: 0.20-0.43), p<0.0001). VILIP-1 concentrations in CSF and serum were elevated in AD compared to Con (p<0.0001 and p<0.01) and CJD (p<0.0001 for CSF and serum), and an increase in CSF was observed already in early AD stages (p<0.0001). In the discrimination of AD versus Con, we could demonstrate a strong diagnostic potential for CSF VILIP-1 alone (area under the curve (AUC): 0.87), CSF VILIP-1/CSF Abeta 1-42 (AUC: 0.98), and serum VILIP-1/CSF Abeta 1-42 ratio (AUC: 0.89). CONCLUSIONS: We here report on the successful establishment of a novel Simoa assay for VILIP-1 and illustrate the potential of CSF and serum VILIP-1 in the differential diagnosis of AD with highest levels in CJD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Neurocalcina/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
15.
J Psychiatr Res ; 156: 390-397, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36323141

RESUMEN

Psychiatric disorders are widely underreported diseases, especially in their early stages. So far, there is no fluid biomarker to confirm the diagnosis of these disorders. Proteomics data suggest the synaptic protein glutamate receptor 4 (GluR4), part of the AMPA receptor, as a potential diagnostic biomarker of major depressive disorder (MDD). A novel sandwich ELISA was established and analytically validated to detect GluR4 in cerebrospinal fluid (CSF) samples. A total of 85 subjects diagnosed with MDD (n = 36), bipolar disorder (BD, n = 12), schizophrenia (SCZ, n = 12) and neurological controls (CON, n = 25) were analysed. The data exhibited a significant correlation (r = 0.74; CI:0.62 to 0.82; p < 0.0001) with the antibody-free multiple reaction monitoring (MRM) mass spectrometry (MS) data. CSF GluR4 levels were lower in MDD (p < 0.002) and BD (p = 0.012) than in CON. Moreover, subjects with SCZ described a trend towards lower levels than CON (p = 0.13). The novel GluR4 ELISA may favour the clinical application of this protein as a potential diagnostic biomarker of psychiatric disorders and may facilitate the understanding of the pathophysiological mechanisms behind these disorders.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Proteómica , Receptores de Glutamato
16.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077033

RESUMEN

Traumatic brain injury (TBI) represents a major determining factor of outcome in severely injured patients. However, reliable brain-damage-monitoring markers are still missing. We therefore assessed brain-specific beta-synuclein as a novel blood biomarker of synaptic damage and measured the benchmarks neurofilament light chain (NfL), as a neuroaxonal injury marker, and glial fibrillary acidic protein (GFAP), as an astroglial injury marker, in patients after polytrauma with and without TBI. Compared to healthy volunteers, plasma NfL, beta-synuclein, and GFAP were significantly increased after polytrauma. The markers demonstrated highly distinct time courses, with beta-synuclein and GFAP peaking early and NfL concentrations gradually elevating during the 10-day observation period. Correlation analyses revealed a distinct influence of the extent of extracranial hemorrhage and the severity of head injury on biomarker concentrations. A combined analysis of beta-synuclein and GFAP effectively discriminated between polytrauma patients with and without TBI, despite the comparable severity of injury. Furthermore, we found a good predictive performance for fatal outcome by employing the initial plasma concentrations of NfL, beta-synuclein, and GFAP. Our findings suggest a high diagnostic value of neuronal injury markers reflecting distinct aspects of neuronal injury for the diagnosis of TBI in the complex setting of polytrauma, especially in clinical surroundings with limited imaging opportunities.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Traumatismo Múltiple , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Proteína Ácida Fibrilar de la Glía , Humanos , Filamentos Intermedios , Sinucleína beta
17.
Artículo en Inglés | MEDLINE | ID: mdl-35995553

RESUMEN

BACKGROUND: Synaptosomal-associated protein 25 (SNAP-25) in cerebrospinal fluid (CSF) is an emerging synaptic biomarker for the early diagnosis of Alzheimer's disease (AD). However, comprehensive studies investigating the marker in Creutzfeldt-Jakob disease (CJD) and in the differential diagnosis of neurodegenerative diseases are still lacking. METHODS: We developed a novel, sensitive ELISA for the measurement of SNAP-25 in CSF. In total, we analysed 316 patients from 6 diagnostic groups comprising patients with AD (n=96), CJD (n=55), Parkinson's disease spectrum (n=41), frontotemporal lobar degeneration (n=25) and amyotrophic lateral sclerosis (n=24) and non-neurodegenerative control patients (n=75). Using receiver operating characteristic curve analysis, we analysed the differential diagnostic potential and compared the results with core AD biomarkers. RESULTS: SNAP-25 CSF concentrations were elevated in AD and CJD (p<0.0001) but not in the other neurodegenerative diseases. Increased levels were observed already at early AD and CJD stages (p<0.0001). In CJD, SNAP-25 levels correlated negatively with survival time (r=-0.33 (95% CI -0.57 to -0.04, p=0.02). For the discrimination of AD from all other diseases except CJD, we observed a good diagnostic performance for CSF SNAP-25 (area under the curve (AUC) 0.85) which was further improved by applying the ratio with CSF amyloid-ß 1-42 (AUC 0.95). For CJD, we could demonstrate a strong differential diagnostic potential against all other groups including AD (AUC 0.97). CONCLUSION: Using the novel established CSF SNAP-25 ELISA, we here demonstrate the applicability of SNAP-25 as an early synaptic biomarker for both AD and CJD with a possible prognostic value in patients with CJD.

18.
Neurobiol Aging ; 117: 212-221, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35780561

RESUMEN

We explored the brain metabolism correlates of emergent cerebrospinal fluid (CSF) biomarkers in a group of 26 patients with prodromal Alzheimer's disease (AD). Distinct volumes of interest (VOIs) expressed the sites of correlation between CSF biomarkers and brain metabolism as determined on [18F]FDG-PET images, as well as of significant hypometabolism in patients compared to healthy controls. Neurogranin- and α-synuclein-VOIs included left precuneus and/or posterior cingulate cortex (PC and/or PCC) and partially overlapped hypometabolism at those sites. ß-synuclein- and neurofilament light chain (NfL)-VOIs regarded either left or right lateral temporal areas, respectively, with partial overlap with hypometabolism only for the ß-synuclein-VOI, whereas the NfL-VOI did not include hypometabolic regions. We speculate that CSF neurogranin and α-synuclein express an already established hippocampal damage leading to PC and/or PCC deafferentation and hypometabolism. ß-synuclein may represent the progression of synaptopathy in the temporal lobe, while NfL the axonal injury in right temporal regions where neuronal loss is not yet evident.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquídeo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Humanos , Neurogranina , Tomografía de Emisión de Positrones/métodos , Datos Preliminares , alfa-Sinucleína/metabolismo , Sinucleína beta/metabolismo
19.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35805926

RESUMEN

SerpinA1 (α1-antitrypsin) is a soluble glycoprotein, the cerebrospinal fluid (CSF) isoforms of which showed disease-specific changes in neurodegenerative disorders that are still unexplored in Alz-heimer's disease (AD). By means of capillary isoelectric focusing immunoassay, we investigated six serpinA1 isoforms in CSF samples of controls (n = 29), AD-MCI (n = 29), AD-dem (n = 26) and Lewy body disease (LBD, n = 59) patients and correlated the findings with CSF AD core biomarkers (Aß42/40 ratio, p-tau, t-tau). Four CSF serpinA1 isoforms were differently expressed in AD patients compared to controls and LBD patients, especially isoforms 2 and 4. AD-specific changes were found since the MCI stage and significantly correlated with decreased Aß42/40 (p < 0.05) and in-creased p-tau and t-tau levels in CSF (p < 0.001). Analysis of serpinA1 isoform provided good di-agnostic accuracy in discriminating AD patients versus controls (AUC = 0.80) and versus LBD patients (AUC = 0.92), with best results in patients in the dementia stage (AUC = 0.97). SerpinA1 isoform expression is altered in AD patients, suggesting a common, albeit disease-specific, in-volvement of serpinA1 in most neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedades Neurodegenerativas , alfa 1-Antitripsina , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Humanos , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo , Isoformas de Proteínas , alfa 1-Antitripsina/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo
20.
J Neurol ; 269(9): 5136-5143, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35737109

RESUMEN

BACKGROUND: Proenkephalin (PENK) and prodynorphin (PDYN) are peptides mainly produced by the striatal medium spiny projection neurons (MSNs) under dopaminergic signaling. Therefore, they may represent candidate biomarkers in Huntington's disease (HD) and Parkinson's disease (PD), two neurodegenerative diseases characterized by striatal atrophy and/or dysfunction. METHODS: Using an in-house established liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in multiple reaction monitoring mode (MRM) we measured cerebrospinal fluid (CSF) levels of PENK- and PDYN- derived peptides in patients with HD (n = 47), PD (n = 61), Alzheimer's disease (n = 11), amyotrophic lateral sclerosis (n = 14) and in 92 control subjects. Moreover, we investigated the possible associations between biomarkers and disease severity scales in HD and PD and the effect of dopaminergic therapy on biomarker levels in PD. RESULTS: In HD, CSF PENK- and PDYN-derived peptide levels were significantly decreased compared to all other groups and were associated with disease severity scores. In PD, both biomarkers were within the normal range, but higher PDYN levels were found in dopamine-treated compared to untreated patients. In PD, both CSF PENK and PDYN did not correlate with clinical severity scales. CONCLUSIONS: CSF PENK- and PDYN-derived peptides appeared to be promising pathogenetic and disease severity markers in HD, reflecting the ongoing striatal neurodegeneration along with the loss of MSNs. In PD patients, CSF PDYN showed a limitative role as a possible pharmacodynamic marker during dopaminergic therapy, but further investigations are needed.


Asunto(s)
Enfermedad de Huntington , Enfermedad de Parkinson , Biomarcadores/líquido cefalorraquídeo , Cromatografía Liquida , Dopamina , Encefalinas , Humanos , Enfermedad de Huntington/líquido cefalorraquídeo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Precursores de Proteínas , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...