Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Med ; 12(1): 19, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075678

RESUMEN

BACKGROUND: Midbrain dopaminergic neurons (MDN) represent 0.0005% of the brain's neuronal population and mediate cognition, food intake, and metabolism. MDN are also posited to underlay the neurobiological dysfunction of schizophrenia (SCZ), a severe neuropsychiatric disorder that is characterized by psychosis as well as multifactorial medical co-morbidities, including metabolic disease, contributing to markedly increased morbidity and mortality. Paradoxically, however, the genetic risk sequences of psychosis and traits associated with metabolic disease, such as body mass, show very limited overlap. METHODS: We investigated the genomic interaction of SCZ with medical conditions and traits, including body mass index (BMI), by exploring the MDN's "spatial genome," including chromosomal contact landscapes as a critical layer of cell type-specific epigenomic regulation. Low-input Hi-C protocols were applied to 5-10 × 103 dopaminergic and other cell-specific nuclei collected by fluorescence-activated nuclei sorting from the adult human midbrain. RESULTS: The Hi-C-reconstructed MDN spatial genome revealed 11 "Euclidean hot spots" of clustered chromatin domains harboring risk sequences for SCZ and elevated BMI. Inter- and intra-chromosomal contacts interconnecting SCZ and BMI risk sequences showed massive enrichment for brain-specific expression quantitative trait loci (eQTL), with gene ontologies, regulatory motifs and proteomic interactions related to adipogenesis and lipid regulation, dopaminergic neurogenesis and neuronal connectivity, and reward- and addiction-related pathways. CONCLUSIONS: We uncovered shared nuclear topographies of cognitive and metabolic risk variants. More broadly, our PsychENCODE sponsored Hi-C study offers a novel genomic approach for the study of psychiatric and medical co-morbidities constrained by limited overlap of their respective genetic risk architectures on the linear genome.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Esquizofrenia/genética , Adipogénesis , Animales , Índice de Masa Corporal , Cromosomas/genética , Cognición , Humanos , Metabolismo de los Lípidos , Mesencéfalo/citología , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Esquizofrenia/metabolismo , Esquizofrenia/patología
2.
Mol Psychiatry ; 25(11): 2952-2969, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-30089790

RESUMEN

Lipids are essential to brain functions, yet they remain largely unexplored. Here we investigated the lipidome composition of prefrontal cortex gray matter in 396 cognitively healthy individuals with ages spanning 100 years, as well as 67 adult individuals diagnosed with autism (ASD), schizophrenia (SZ), and Down syndrome (DS). Of the 5024 detected lipids, 95% showed significant age-dependent concentration differences clustering into four temporal stages, and resulting in a gradual increase in membrane fluidity in individuals ranging from newborn to nonagenarian. Aging affects 14% of the brain lipidome with late-life changes starting predominantly at 50-55 years of age-a period of general metabolic transition. All three diseases alter the brain lipidome composition, leading-among other things-to a concentration decrease in glycerophospholipid metabolism and endocannabinoid signaling pathways. Lipid concentration decreases in SZ were further linked to genetic variants associated with disease, indicating the relevance of the lipidome changes to disease progression.


Asunto(s)
Envejecimiento/metabolismo , Disfunción Cognitiva/metabolismo , Lipidómica , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Cognición , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Transl Psychiatry ; 9(1): 256, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31624234

RESUMEN

Both heritability and environment contribute to risk for schizophrenia. However, the molecular mechanisms of interactions between genetic and non-genetic factors remain unclear. Epigenetic regulation of neuronal genome may be a presumable mechanism in pathogenesis of schizophrenia. Here, we performed analysis of open chromatin landscape of gene promoters in prefrontal cortical (PFC) neurons from schizophrenic patients. We cataloged cell-type-based epigenetic signals of transcriptional start sites (TSS) marked by histone H3-K4 trimethylation (H3K4me3) across the genome in PFC from multiple schizophrenia subjects and age-matched control individuals. One of the top-ranked chromatin alterations was found in the major histocompatibility (MHC) locus on chromosome 6 highlighting the overlap between genetic and epigenetic risk factors in schizophrenia. The chromosome conformation capture (3C) analysis in human brain cells revealed the architecture of multipoint chromatin interactions between the schizophrenia-associated genetic and epigenetic polymorphic sites and distantly located HLA-DRB5 and BTNL2 genes. In addition, schizophrenia-specific chromatin modifications in neurons were particularly prominent for non-coding RNA genes, including an uncharacterized LINC01115 gene and recently identified BNRNA_052780. Notably, protein-coding genes with altered epigenetic state in schizophrenia are enriched for oxidative stress and cell motility pathways. Our results imply the rare individual epigenetic alterations in brain neurons are involved in the pathogenesis of schizophrenia.


Asunto(s)
Cromatina/genética , Histonas/genética , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Esquizofrenia/genética , Butirofilinas/genética , Metilación de ADN , Epigénesis Genética , Cadenas HLA-DRB5/genética , Humanos , Masculino , Persona de Mediana Edad , ARN Largo no Codificante/genética , Esquizofrenia/etiología , Sitio de Iniciación de la Transcripción , Adulto Joven
4.
Commun Biol ; 2: 234, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263778

RESUMEN

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with yet incompletely uncovered molecular determinants. Alterations in the abundance of low molecular weight compounds (metabolites) in ASD could add to our understanding of the disease. Indeed, such alterations take place in the urine, plasma and cerebellum of ASD individuals. In this work, we investigated mass-spectrometric signal intensities of 1,366 metabolites in the prefrontal cortex grey matter of 32 ASD and 40 control individuals. 15% of these metabolites showed significantly different intensities in ASD and clustered in 16 metabolic pathways. Of them, ten pathways were altered in urine and blood of ASD individuals (Fisher test, p < 0.05), opening an opportunity for the design of new diagnostic instruments. Furthermore, metabolic measurements conducted in 40 chimpanzees and 40 macaques showed an excess of metabolite intensity differences unique to humans, supporting the hypothesized disruption of evolutionary novel cortical mechanisms in ASD.


Asunto(s)
Trastorno Autístico/metabolismo , Metaboloma , Corteza Prefrontal/metabolismo , Animales , Evolución Molecular , Sustancia Gris/metabolismo , Humanos , Macaca mulatta , Aprendizaje Automático , Redes y Vías Metabólicas , Pan troglodytes
5.
FASEB J ; 33(7): 8161-8173, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30970224

RESUMEN

Human prefrontal cortex (PFC) is associated with broad individual variabilities in functions linked to personality, social behaviors, and cognitive functions. The phenotype variabilities associated with brain functions can be caused by genetic or epigenetic factors. The interactions between these factors in human subjects is, as of yet, poorly understood. The heterogeneity of cerebral tissue, consisting of neuronal and nonneuronal cells, complicates the comparative analysis of gene activities in brain specimens. To approach the underlying neurogenomic determinants, we performed a deep analysis of open chromatin-associated histone methylation in PFC neurons sorted from multiple human individuals in conjunction with whole-genome and transcriptome sequencing. Integrative analyses produced novel unannotated neuronal genes and revealed individual-specific chromatin "blueprints" of neurons that, in part, relate to genetic background. Surprisingly, we observed gender-dependent epigenetic signals, implying that gender may contribute to the chromatin variabilities in neurons. Finally, we found epigenetic, allele-specific activation of the testis-specific gene nucleoporin 210 like (NUP210L) in brain in some individuals, which we link to a genetic variant occurring in <3% of the human population. Recently, the NUP210L locus has been associated with intelligence and mathematics ability. Our findings highlight the significance of epigenetic-genetic footprinting for exploring neurologic function in a subject-specific manner.-Gusev, F. E., Reshetov, D. A., Mitchell, A. C., Andreeva, T. V., Dincer, A., Grigorenko, A. P., Fedonin, G., Halene, T., Aliseychik, M., Goltsov, A. Y., Solovyev, V., Brizgalov, L., Filippova, E., Weng, Z., Akbarian, S., Rogaev, E. I. Epigenetic-genetic chromatin footprinting identifies novel and subject-specific genes active in prefrontal cortex neurons.


Asunto(s)
Cromatina/metabolismo , Cognición/fisiología , Epigénesis Genética/fisiología , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Sitios Genéticos/fisiología , Histonas/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Metilación , Persona de Mediana Edad , Neuronas/citología , Proteínas de Complejo Poro Nuclear/biosíntesis , Corteza Prefrontal/citología , Embarazo
6.
World J Biol Psychiatry ; 18(5): 330-356, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27782767

RESUMEN

OBJECTIVES: Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS: This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS: Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS: Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.


Asunto(s)
Biomarcadores/análisis , Consenso , Esquizofrenia/genética , Comités Consultivos , Metilación de ADN , Endofenotipos , Epigénesis Genética , Expresión Génica , Humanos , MicroARNs/análisis , Proteómica
7.
PLoS Biol ; 14(9): e1002558, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27685936

RESUMEN

Cognitive defects in autism spectrum disorder (ASD) include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR) transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans.

8.
Schizophr Res ; 177(1-3): 115-124, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26827128

RESUMEN

The Psychiatric Genomics Consortium-Schizophrenia Workgroup (PGC-SCZ) recently identified 108 loci associated with increased risk for schizophrenia (SCZ). The vast majority of these variants reside within non-coding sequences of the genome and are predicted to exert their effects by affecting the mechanism of action of cis regulatory elements (CREs), such as promoters and enhancers. Although a number of large-scale collaborative efforts (e.g. ENCODE) have achieved a comprehensive mapping of CREs in human cell lines or tissue homogenates, it is becoming increasingly evident that many risk-associated variants are enriched for expression Quantitative Trait Loci (eQTLs) and CREs in specific tissues or cells. As such, data derived from previous research endeavors may not capture fully cell-type and/or region specific changes associated with brain diseases. Coupling recent technological advances in genomics with cell-type specific methodologies, we are presented with an unprecedented opportunity to better understand the genetics of normal brain development and function and, in turn, the molecular basis of neuropsychiatric disorders. In this review, we will outline ongoing efforts towards this goal and will discuss approaches with the potential to shed light on the mechanism(s) of action of cell-type specific cis regulatory elements and their putative roles in disease, with particular emphasis on understanding the manner in which the epigenome and CREs influence the etiology of SCZ.


Asunto(s)
Epigénesis Genética , Predisposición Genética a la Enfermedad , Genoma , Esquizofrenia/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Humanos , Esquizofrenia/metabolismo
9.
Schizophr Res ; 170(2-3): 235-44, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26776227

RESUMEN

Increased neuronal densities in subcortical white matter have been reported for some cases with schizophrenia. The underlying cellular and molecular mechanisms remain unresolved. We exposed 26 young adult macaque monkeys for 6 months to either clozapine, haloperidol or placebo and measured by structural MRI frontal gray and white matter volumes before and after treatment, followed by observer-independent, flow-cytometry-based quantification of neuronal and non-neuronal nuclei and molecular fingerprinting of cell-type specific transcripts. After clozapine exposure, the proportion of nuclei expressing the neuronal marker NeuN increased by approximately 50% in subcortical white matter, in conjunction with a more subtle and non-significant increase in overlying gray matter. Numbers and proportions of nuclei expressing the oligodendrocyte lineage marker, OLIG2, and cell-type specific RNA expression patterns, were maintained after antipsychotic drug exposure. Frontal lobe gray and white matter volumes remained indistinguishable between antipsychotic-drug-exposed and control groups. Chronic clozapine exposure increases the proportion of NeuN+ nuclei in frontal subcortical white matter, without alterations in frontal lobe volumes or cell type-specific gene expression. Further exploration of neurochemical plasticity in non-human primate brain exposed to antipsychotic drugs is warranted.


Asunto(s)
Antipsicóticos/farmacología , Encéfalo/efectos de los fármacos , Clozapina/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Sustancia Blanca/efectos de los fármacos , Administración Oral , Animales , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Recuento de Células , Femenino , Citometría de Flujo , Sustancia Gris/anatomía & histología , Sustancia Gris/efectos de los fármacos , Sustancia Gris/metabolismo , Haloperidol/farmacología , Inmunohistoquímica , Macaca , Imagen por Resonancia Magnética , Masculino , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Tamaño de los Órganos , Distribución Aleatoria , Sustancia Blanca/anatomía & histología , Sustancia Blanca/metabolismo
10.
Neuron ; 87(1): 77-94, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26139371

RESUMEN

Turnover and exchange of nucleosomal histones and their variants, a process long believed to be static in post-replicative cells, remains largely unexplored in brain. Here, we describe a novel mechanistic role for HIRA (histone cell cycle regulator) and proteasomal degradation-associated histone dynamics in the regulation of activity-dependent transcription, synaptic connectivity, and behavior. We uncover a dramatic developmental profile of nucleosome occupancy across the lifespan of both rodents and humans, with the histone variant H3.3 accumulating to near-saturating levels throughout the neuronal genome by mid-adolescence. Despite such accumulation, H3.3-containing nucleosomes remain highly dynamic-in a modification-independent manner-to control neuronal- and glial-specific gene expression patterns throughout life. Manipulating H3.3 dynamics in both embryonic and adult neurons confirmed its essential role in neuronal plasticity and cognition. Our findings establish histone turnover as a critical and previously undocumented regulator of cell type-specific transcription and plasticity in mammalian brain.


Asunto(s)
Encéfalo/metabolismo , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Plasticidad Neuronal/genética , Neuronas/metabolismo , Nucleosomas/metabolismo , Adolescente , Adulto , Anciano , Animales , Cerebelo/metabolismo , Niño , Preescolar , Epigénesis Genética , Femenino , Feto , Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Transcripción Genética , Adulto Joven
12.
Eur Arch Psychiatry Clin Neurosci ; 263(4): 273-84, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23381549

RESUMEN

Notwithstanding the considerable advances in the treatment options for schizophrenia, the cognitive symptoms in particular are not receptive to antipsychotic treatment and considered one of the main predictors for poor social and functional outcome of the disease. Recent findings in preclinical model systems indicate that epigenetic modulation might emerge as a promising target for the treatment of cognitive disorders. The aim of this review is to introduce some of the principles of chromatin biology to the reader and to discuss a possible role in the neurobiology and pathophysiology of schizophrenia. We will discuss potential epigenetic targets for drug therapy, including histone deacetylase inhibitors (HDACi). In a second part, conceptual and practical challenges associated with clinical trials of chromatin-modifying drugs in psychiatric patient populations are discussed, including safety profiles, the potential for adverse effects and general issues revolving around pharmacokinetics and pharmacodynamics. Additional investigations are required in order to fully evaluate the potential of HDACi and similar "epigenetic therapies" as novel treatment options for schizophrenia and other psychotic disease.


Asunto(s)
Epigénesis Genética/fisiología , Inhibidores de Histona Desacetilasas/farmacología , Esquizofrenia/genética , Antipsicóticos/efectos adversos , Antipsicóticos/farmacología , Clozapina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Quimioterapia Combinada , Inhibidores de Histona Desacetilasas/efectos adversos , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/enzimología , Ácido Valproico/farmacología , Ácido gamma-Aminobutírico/metabolismo
13.
PLoS One ; 7(7): e39775, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22911690

RESUMEN

BACKGROUND: Individuals with schizophrenia show increased smoking rates which may be due to a beneficial effect of nicotine on cognition and information processing. Decreased amplitude of the P50 and N100 auditory event-related potentials (ERPs) is observed in patients. Both measures show normalization following administration of nicotine. Recent studies identified an association between deficits in auditory evoked gamma oscillations and impaired information processing in schizophrenia, and there is evidence that nicotine normalizes gamma oscillations. Although the role of nicotine receptor subtypes in augmentation of ERPs has received some attention, less is known about how these receptor subtypes regulate the effect of nicotine on evoked gamma activity. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of nicotine, the α7 nicotine receptor antagonist methyllycaconitine (MLA) the α4ß4/α4ß2 nicotine receptor antagonist dihydro-beta-erythroidine (DHßE), and the α4ß2 agonist AZD3480 on P20 and N40 amplitude as well as baseline and event-related gamma oscillations in mice, using electrodes in hippocampal CA3. Nicotine increased P20 amplitude, while DHßE blocked nicotine-induced enhancements in P20 amplitude. Conversely, MLA did not alter P20 amplitude either when presented alone or with nicotine. Administration of the α4ß2 specific agonist AZD3480 did not alter any aspect of P20 response, suggesting that DHßE blocks the effects of nicotine through a non-α4ß2 receptor specific mechanism. Nicotine and AZD3480 reduced N40 amplitude, which was blocked by both DHßE and MLA. Finally, nicotine significantly increased event-related gamma, as did AZD3480, while DHßE but not MLA blocked the effect of nicotine on event-related gamma. CONCLUSIONS/SIGNIFICANCE: These results support findings showing that nicotine-induced augmentation of P20 amplitude occurs via a DHßE sensitive mechanism, but suggests that this does not occur through activation of α4ß2 receptors. Event-related gamma is strongly influenced by activation of α4ß2, but not α7, receptor subtypes, while disruption of N40 amplitude requires the activation of multiple receptor subtypes.


Asunto(s)
Señalización del Calcio , Potenciales Evocados Auditivos , Receptores Nicotínicos/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Potenciales Relacionados con Evento P300/efectos de los fármacos , Potenciales Evocados Auditivos/efectos de los fármacos , Humanos , Masculino , Ratones , Nicotina/farmacología , Antagonistas Nicotínicos/farmacología
14.
Proc Natl Acad Sci U S A ; 108(43): E962-70, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21969553

RESUMEN

DTNBP1 (dystrobrevin binding protein 1) is a leading candidate susceptibility gene in schizophrenia and is associated with working memory capacity in normal subjects. In schizophrenia, the encoded protein dystrobrevin-binding protein 1 (dysbindin-1) is often reduced in excitatory cortical limbic synapses. We found that reduced dysbindin-1 in mice yielded deficits in auditory-evoked response adaptation, prepulse inhibition of startle, and evoked γ-activity, similar to patterns in schizophrenia. In contrast to the role of dysbindin-1 in glutamatergic transmission, γ-band abnormalities in schizophrenia are most often attributed to disrupted inhibition and reductions in parvalbumin-positive interneuron (PV cell) activity. To determine the mechanism underlying electrophysiological deficits related to reduced dysbindin-1 and the potential role of PV cells, we examined PV cell immunoreactivity and measured changes in net circuit activity using voltage-sensitive dye imaging. The dominant circuit impact of reduced dysbindin-1 was impaired inhibition, and PV cell immunoreactivity was reduced. Thus, this model provides a link between a validated candidate gene and an auditory endophenotypes. Furthermore, these data implicate reduced fast-phasic inhibition as a common underlying mechanism of schizophrenia-associated intermediate phenotypes.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Potenciales Evocados Auditivos/fisiología , Sistema Límbico/metabolismo , Esquizofrenia/genética , Sinapsis/metabolismo , Animales , Disbindina , Proteínas Asociadas a la Distrofina , Electrofisiología , Potenciales Evocados Auditivos/genética , Femenino , Genotipo , Inmunohistoquímica , Masculino , Ratones , Ratones Mutantes , Parvalbúminas
15.
Brain Res Bull ; 83(3-4): 147-61, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20433908

RESUMEN

An endophenotype is a heritable trait that is generally considered to be more highly, associated with a gene-based neurological deficit than a disease phenotype itself. Such, endophenotypic deficits may therefore be observed in the non-affected relatives of disease patients. Once endophenotypes have been established for a given illness, such as schizophrenia, mechanisms of, action may then be established and treatment options developed in order to target such measures. The, current paper describes and assesses the merits and limitations of utilizing behavioral and, electrophysiological endophenotypes of schizophrenia in mice. Such endophenotypic deficits include: decreased auditory event related potential (ERP) amplitude and gating (specifically, that of the P20, N40, P80 and P120); impaired mismatch negativity (MMN); changes in theta and gamma frequency, analyses; decreased pre-pulse inhibition (PPI); impaired working and episodic memories (for instance, novel object recognition [NOR], contextual and cued fear conditioning, latent inhibition, Morris and, radial arm maze identification and nose poke); sociability; and locomotor activity. A variety of, pharmacological treatments, including ketamine, MK-801 and phencyclidine (PCP) can be used to, induce some of the deficits described above, and numerous transgenic mouse strains have been, developed to address the mechanisms responsible for such endophenotypic differences. We also, address the viability and validity of using such measures regarding their potential clinical implications, and suggest several practices that could increase the translatability of preclinical data.


Asunto(s)
Conducta Animal/fisiología , Endofenotipos , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Estimulación Acústica , Animales , Modelos Animales de Enfermedad , Humanos , Inhibición Psicológica , Discapacidades para el Aprendizaje/etiología , Trastornos de la Memoria/etiología , Ratones
16.
J Pharmacol Exp Ther ; 331(1): 308-18, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19602553

RESUMEN

Clinical and experimental data suggest dysregulation of N-methyl-d-aspartate receptor (NMDAR)-mediated glutamatergic pathways in schizophrenia. The interaction between NMDAR-mediated abnormalities and the response to novel environment has not been studied. Mice expressing 5 to 10% of normal N-methyl-d-aspartate receptor subunit 1 (NR1) subunits [NR1(neo)(-/-)] were compared with wild-type littermates for positive deflection at 20 ms (P20) and negative deflection at 40 ms (N40) auditory event-related potentials (ERPs). Groups were tested for habituation within and across five testing sessions, with novel environment tested during a sixth session. Subsequently, we examined the effects of a GABA(A) positive allosteric modulator (chlordiazepoxide) and a GABA(B) receptor agonist (baclofen) as potential interventions to normalize aberrant responses. There was a reduction in P20, but not N40 amplitude within each habituation day. Although there was no amplitude or gating change across habituation days, there was a reduction in P20 and N40 amplitude and gating in the novel environment. There was no difference between genotypes for N40. Only NR1(neo)(-/-) mice had reduced P20 in the novel environment. Chlordiazepoxide increased N40 amplitude in wild-type mice, whereas baclofen increased P20 amplitude in NR1(neo)(-/-) mice. As noted in previous publications, the pattern of ERPs in NR1(neo)(-/-) mice does not recapitulate abnormalities in schizophrenia. In addition, reduced NR1 expression does not influence N40 habituation but does affect P20 in a novel environment. Thus, the pattern of P50 (positive deflection at 50 ms) but not N100 (negative deflection at 100 ms) in human studies may relate to subjects' reactions to unfamiliar environments. In addition, NR1 reduction decreased GABA(A) receptor-mediated effects on ERPs while causing increased GABA(B) receptor-mediated effects. Future studies will examine changes in GABA receptor subunits after reductions in NR1 expression.


Asunto(s)
Potenciales Evocados Auditivos/fisiología , Conducta Exploratoria/fisiología , Agonistas del GABA/farmacología , Habituación Psicofisiológica/fisiología , Receptores de N-Metil-D-Aspartato/deficiencia , Receptores de N-Metil-D-Aspartato/genética , Estimulación Acústica/métodos , Animales , Potenciales Evocados Auditivos/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Femenino , Agonistas de Receptores de GABA-A , Habituación Psicofisiológica/efectos de los fármacos , Habituación Psicofisiológica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de GABA-A/fisiología
17.
Neuroreport ; 20(14): 1260-4, 2009 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19625986

RESUMEN

Animals process information from different sensory modalities, requiring integration of signals and assignment of significance. People with schizophrenia perceive sensory information without external stimuli (hallucinations) and attribute meaning to coincidental events (referential delusions), suggesting deficits in sensory integration. We investigate sensory integration deficits by measuring the impact of olfactory cues on auditory processing in a mouse model of schizophrenia. N-methyl-D-aspartate-NR1 knockdown and wild-type mice were exposed to predator odor during auditory event-related potentials. Both groups reduced N1 event-related potential amplitude in the presence of predator odor, indicating that mice appropriately integrate olfactory and auditory stimuli. NR1 knockdown mice do not have deficits in this task, suggesting that sensory integration may rely on non-N-methyl-D-aspartate receptor mediated circuits.


Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Potenciales Evocados Auditivos , Odorantes , Percepción Olfatoria/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Modelos Animales de Enfermedad , Electrodos Implantados , Zorros , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microelectrodos , Estimulación Física , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia
18.
Neurobiol Dis ; 35(2): 311-7, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19467327

RESUMEN

Ketamine is an NMDA receptor antagonist with a variety of uses, ranging from recreational drug to pediatric anesthetic and chronic pain reliever. Despite its value in the clinical setting, little is known about the immediate and long-lasting effects of repeated ketamine treatment. We assessed the effects of chronic administration of a subanesthetic dose of ketamine on contextual fear conditioning, detection of pitch deviants and auditory gating. After four, but not two, weeks of daily ketamine injections, mice exhibited decreased freezing in the fear conditioning paradigm. Gating of the P80 component of auditory evoked potentials was also significantly altered by treatment condition, as ketamine caused a significant decrease in S1 amplitude. Additionally, P20 latency was significantly increased as a result of ketamine treatment. Though no interactions were found involving test week, stimulus and treatment condition, these results suggest that repeated ketamine administration impairs fear memory and has lasting effects on encoding of sensory stimuli.


Asunto(s)
Percepción Auditiva/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Potenciales Evocados Auditivos/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Ketamina/farmacología , Estimulación Acústica , Análisis de Varianza , Animales , Percepción Auditiva/fisiología , Electrodos Implantados , Electrochoque , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Miedo , Reacción Cataléptica de Congelación/efectos de los fármacos , Hipocampo/fisiología , Ketamina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Discriminación de la Altura Tonal/efectos de los fármacos , Discriminación de la Altura Tonal/fisiología
19.
Behav Neurosci ; 122(5): 982-90, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18823155

RESUMEN

The usage patterns and biological effects of cigarette smoking differ significantly among men and women. This study seeks to clarify the interaction that exists between nicotine and biological gender by investigating changes in brain electrical activity after acute nicotine treatment. The P20, N40, and P80 components of the auditory evoked potential were examined in male and female C57BL/6J mice using a paired-stimulus gating paradigm. Consistent with previously published data, acute nicotine resulted in increased gating of the P20 but a decrease in that of N40. Nicotine also resulted in a lengthening of P20 latency but a decrease in that of N40 and P80. The P80 latencies of male and female subjects were differentially affected by nicotine, as males appeared to be more sensitive to its shortening effect. Males and females also exhibited differences in N40 and P80 amplitudes, both of which were smaller in males. The effects of gender on auditory evoked potential amplitude suggest dimorphic signaling in the N40 and P80 generators. Whether this electrophysiological sexual dimorphism has functional consequences for sensory or cognitive abilities requires additional research. (PsycINFO Database Record (c) 2008 APA, all rights reserved).


Asunto(s)
Potenciales Evocados Auditivos/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Caracteres Sexuales , Estimulación Acústica/métodos , Análisis de Varianza , Animales , Electroencefalografía/métodos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Tiempo de Reacción/efectos de los fármacos
20.
Drug Discov Today ; 12(19-20): 870-8, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17933689

RESUMEN

Phosphodiesterases are key enzymes in cellular signalling pathways. They degrade cyclic nucleotides and their inhibition via specific inhibitors offers unique 'receptor-independent' opportunities to modify cellular function. An increasing number of in vitro and animal model studies point to innovative treatment options in neurology and psychiatry. This review critiques a selection of recent studies and developments with a focus on dementia/neuroprotection, depression and schizophrenia. Despite increased interest among the clinical neurosciences, there are still no approved PDE inhibitors for clinical use in neurology or psychiatry. Adverse effects are a major impediment for clinical approval. It is therefore necessary to search for more specific inhibitors at the level of different PDE sub-families and isoforms.


Asunto(s)
Demencia/tratamiento farmacológico , Depresión/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Animales , Antidepresivos/uso terapéutico , Antipsicóticos/uso terapéutico , Humanos , Fármacos Neuroprotectores/uso terapéutico , Inhibidores de Fosfodiesterasa/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...