Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur J Radiol ; 176: 111517, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38805884

RESUMEN

PURPOSE: To assess the impact of different quantum iterative reconstruction (QIR) levels on objective and subjective image quality of ultra-high resolution (UHR) coronary CT angiography (CCTA) images and to determine the effect of strength levels on stenosis quantification using photon-counting detector (PCD)-CT. METHOD: A dynamic vessel phantom containing two calcified lesions (25 % and 50 % stenosis) was scanned at heart rates of 60, 80 and 100 beats per minute with a PCD-CT system. In vivo CCTA examinations were performed in 102 patients. All scans were acquired in UHR mode (slice thickness0.2 mm) and reconstructed with four different QIR levels (1-4) using a sharp vascular kernel (Bv64). Image noise, signal-to-noise ratio (SNR), sharpness, and percent diameter stenosis (PDS) were quantified in the phantom, while noise, SNR, contrast-to-noise ratio (CNR), sharpness, and subjective quality metrics (noise, sharpness, overall image quality) were assessed in patient scans. RESULTS: Increasing QIR levels resulted in significantly lower objective image noise (in vitro and in vivo: both p < 0.001), higher SNR (both p < 0.001) and CNR (both p < 0.001). Sharpness and PDS values did not differ significantly among QIRs (all pairwise p > 0.008). Subjective noise of in vivo images significantly decreased with increasing QIR levels, resulting in significantly higher image quality scores at increasing QIR levels (all pairwise p < 0.001). Qualitative sharpness, on the other hand, did not differ across different levels of QIR (p = 0.15). CONCLUSIONS: The QIR algorithm may enhance the image quality of CCTA datasets without compromising image sharpness or accurate stenosis measurements, with the most prominent benefits at the highest strength level.

2.
Rofo ; 2024 May 28.
Artículo en Inglés, Alemán | MEDLINE | ID: mdl-38806150

RESUMEN

Structured reporting (SR) not only offers advantages regarding report quality but, as an IT-based method, also the opportunity to aggregate and analyze large, highly structured datasets (data mining). In this study, a data mining algorithm was used to calculate epidemiological data and in-hospital prevalence statistics of pulmonary embolism (PE) by analyzing structured CT reports.All structured reports for PE CT scans from the last 5 years (n = 2790) were extracted from the SR database and analyzed. The prevalence of PE was calculated for the entire cohort and stratified by referral type and clinical referrer. Distributions of the manifestation of PEs (central, lobar, segmental, subsegmental, as well as left-sided, right-sided, bilateral) were calculated, and the occurrence of right heart strain was correlated with the manifestation.The prevalence of PE in the entire cohort was 24% (n = 678). The median age of PE patients was 71 years (IQR 58-80), and the sex distribution was 1.2/1 (M/F). Outpatients showed a lower prevalence of 23% compared to patients from regular wards (27%) and intensive care units (30%). Surgically referred patients had a higher prevalence than patients from internal medicine (34% vs. 22%). Patients with central and bilateral PEs had a significantly higher occurrence of right heart strain compared to patients with peripheral and unilateral embolisms.Data mining of structured reports is a simple method for obtaining prevalence statistics, epidemiological data, and the distribution of disease characteristics, as demonstrated by the PE use case. The generated data can be helpful for multiple purposes, such as for internal clinical quality assurance and scientific analyses. To benefit from this, consistent use of SR is required and is therefore recommended. · SR-based data mining allows simple epidemiologic analyses for PE.. · The prevalence of PE differs between outpatients and inpatients.. · Central and bilateral PEs have an increased risk of right heart strain.. · Jorg T, Halfmann MC, Graafen D et al. Structured reporting for efficient epidemiological and in-hospital prevalence analysis of pulmonary embolisms. Fortschr Röntgenstr 2024; DOI 10.1055/a-2301-3349.

3.
Eur J Radiol ; 174: 111386, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447431

RESUMEN

PURPOSE: Studies have shown the incremental value of strain imaging in various cardiac diseases. However, reproducibility and generalizability has remained an issue of concern. To overcome this, simplified algorithms such as rapid atrioventricular strains have been proposed. This multicenter study aimed to assess the reproducibility of rapid strains in a real-world setting and identify potential predictors for higher interobserver variation. METHODS: A total of 4 sites retrospectively identified 80 patients and 80 healthy controls who had undergone cardiac magnetic resonance imaging (CMR) at their respective centers using locally available scanners with respective field strengths and imaging protocols. Strain and volumetric parameters were measured at each site and then independently re-evaluated by a blinded core lab. Intraclass correlation coefficients (ICC) and Bland-Altman plots were used to assess inter-observer agreement. In addition, backward multiple linear regression analysis was performed to identify predictors for higher inter-observer variation. RESULTS: There was excellent agreement between sites in feature-tracking and rapid strain values (ICC ≥ 0.96). Bland-Altman plots showed no significant bias. Bi-atrial feature-tracking and rapid strains showed equally excellent agreement (ICC ≥ 0.96) but broader limits of agreement (≤18.0 % vs. ≤3.5 %). Regression analysis showed that higher field strength and lower temporal resolution (>30 ms) independently predicted reduced interobserver agreement for bi-atrial strain parameters (ß = 0.38, p = 0.02 for field strength and ß = 0.34, p = 0.02 for temporal resolution). CONCLUSION: Simplified rapid left ventricular and bi-atrial strain parameters can be reliably applied in a real-world multicenter setting. Due to the results of the regression analysis, a minimum temporal resolution of 30 ms is recommended when assessing atrial deformation.


Asunto(s)
Imagen por Resonancia Cinemagnética , Imagen por Resonancia Magnética , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Imagen por Resonancia Cinemagnética/métodos , Atrios Cardíacos , Variaciones Dependientes del Observador , Función Ventricular Izquierda
4.
Insights Imaging ; 15(1): 80, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502298

RESUMEN

OBJECTIVES: Artificial intelligence (AI) has tremendous potential to help radiologists in daily clinical routine. However, a seamless, standardized, and time-efficient way of integrating AI into the radiology workflow is often lacking. This constrains the full potential of this technology. To address this, we developed a new reporting pipeline that enables automated pre-population of structured reports with results provided by AI tools. METHODS: Findings from a commercially available AI tool for chest X-ray pathology detection were sent to an IHE-MRRT-compliant structured reporting (SR) platform as DICOM SR elements and used to automatically pre-populate a chest X-ray SR template. Pre-populated AI results could be validated, altered, or deleted by radiologists accessing the SR template. We assessed the performance of this newly developed AI to SR pipeline by comparing reporting times and subjective report quality to reports created as free-text and conventional structured reports. RESULTS: Chest X-ray reports with the new pipeline could be created in significantly less time than free-text reports and conventional structured reports (mean reporting times: 66.8 s vs. 85.6 s and 85.8 s, respectively; both p < 0.001). Reports created with the pipeline were rated significantly higher quality on a 5-point Likert scale than free-text reports (p < 0.001). CONCLUSION: The AI to SR pipeline offers a standardized, time-efficient way to integrate AI-generated findings into the reporting workflow as parts of structured reports and has the potential to improve clinical AI integration and further increase synergy between AI and SR in the future. CRITICAL RELEVANCE STATEMENT: With the AI-to-structured reporting pipeline, chest X-ray reports can be created in a standardized, time-efficient, and high-quality manner. The pipeline has the potential to improve AI integration into daily clinical routine, which may facilitate utilization of the benefits of AI to the fullest. KEY POINTS: • A pipeline was developed for automated transfer of AI results into structured reports. • Pipeline chest X-ray reporting is faster than free-text or conventional structured reports. • Report quality was also rated higher for reports created with the pipeline. • The pipeline offers efficient, standardized AI integration into the clinical workflow.

5.
Radiology ; 310(2): e231956, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376407

RESUMEN

Background Coronary CT angiography is a first-line test in coronary artery disease but is limited by severe calcifications. Photon-counting-detector (PCD) CT improves spatial resolution. Purpose To investigate the effect of improved spatial resolution on coronary stenosis assessment and reclassification. Materials and Methods Coronary stenoses were evaluated prospectively in a vessel phantom (in vitro) containing two stenoses (25%, 50%), and retrospectively in patients (in vivo) who underwent ultrahigh-spatial-resolution cardiac PCD CT (from July 2022 to April 2023). Images were reconstructed at standard resolution (section thickness, 0.6 mm; increment, 0.4 mm; Bv44 kernel), high spatial resolution (section thickness, 0.4 mm; increment, 0.2 mm; Bv44 kernel), and ultrahigh spatial resolution (section thickness, 0.2; increment, 0.1 mm; Bv64 kernel). Percentages of diameter stenosis (DS) were compared between reconstructions. In vitro values were compared with the manufacturer specifications of the phantom and patient results were assessed regarding effects on Coronary Artery Disease Reporting and Data System (CAD-RADS) reclassification. Results The in vivo sample included 114 patients (mean age, 68 years ± 9 [SD]; 71 male patients). In vitro percentage DS measurements were more accurate with increasing spatial resolution for both 25% and 50% stenoses (mean bias for standard resolution, high spatial resolution, and ultrahigh spatial resolution, respectively: 10.1%, 8.0%, and 2.3%; P < .001). In vivo results confirmed decreasing median percentage DS with increasing spatial resolution for calcified stenoses (n = 161) (standard resolution, high spatial resolution, and ultrahigh spatial resolution, respectively: 41.5% [IQR, 27.3%-58.2%], 34.8% [IQR, 23.7%-55.1%], and 26.7% [IQR, 18.6%-44.3%]; P < .001), whereas noncalcified (n = 13) and mixed plaques (n = 19) did not show evidence of a difference (P ≥ .88). Ultrahigh-spatial-resolution reconstructions led to reclassification of 62 of 114 (54.4%) patients to lower CAD-RADS category than that assigned using standard resolution. Conclusion In vivo and in vitro coronary stenosis assessment improved for calcified stenoses by using ultrahigh-spatial-resolution PCD CT reconstructions, leading to lower percentage DS compared with standard resolution and clinically relevant rates of reclassification. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by McCollough in this issue.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Humanos , Masculino , Anciano , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Constricción Patológica , Angiografía por Tomografía Computarizada , Estudios Retrospectivos , Estenosis Coronaria/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Angiografía Coronaria
6.
AJR Am J Roentgenol ; 222(3): e2330481, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38197760

RESUMEN

BACKGROUND. Calcium blooming causes stenosis overestimation on coronary CTA. OBJECTIVE. The purpose of this article was to evaluate the impact of virtual monoenergetic imaging (VMI) reconstruction level on coronary artery stenosis quantification using photon-counting detector (PCD) CT. METHODS. A phantom containing two custom-made vessels (representing 25% and 50% stenosis) underwent PCD CT acquisitions without and with simulated cardiac motion. A retrospective analysis was performed of 33 patients (seven women, 26 men; mean age, 71.3 ± 9.0 [SD] years; 64 coronary artery stenoses) who underwent coronary CTA by PCD CT followed by invasive coronary angiography (ICA). Scans were reconstructed at nine VMI energy levels (40-140 keV). Percentage diameter stenosis (PDS) was measured, and bias was determined from the ground-truth stenosis percentage in the phantom and ICA-derived quantitative coronary angiography measurements in patients. Extent of blooming artifact was measured in the phantom and in calcified and mixed plaques in patients. RESULTS. In the phantom, PDS decreased for 25% stenosis from 59.9% (40 keV) to 13.4% (140 keV) and for 50% stenosis from 81.6% (40 keV) to 42.3% (140 keV). PDS showed lowest bias for 25% stenosis at 90 keV (bias, 1.4%) and for 50% stenosis at 100 keV (bias, -0.4%). Blooming artifacts decreased for 25% stenosis from 61.5% (40 keV) to 35.4% (140 keV) and for 50% stenosis from 82.7% (40 keV) to 52.1% (140 keV). In patients, PDS for calcified plaque decreased from 70.8% (40 keV) to 57.3% (140 keV), for mixed plaque decreased from 69.8% (40 keV) to 56.3% (140 keV), and for noncalcified plaque was 46.6% at 40 keV and 54.6% at 140 keV. PDS showed lowest bias for calcified plaque at 100 keV (bias, 17.2%), for mixed plaque at 140 keV (bias, 5.0%), and for noncalcified plaque at 40 keV (bias, -0.5%). Blooming artifacts decreased for calcified plaque from 78.4% (40 keV) to 48.6% (140 keV) and for mixed plaque from 73.1% (40 keV) to 44.7% (140 keV). CONCLUSION. For calcified and mixed plaque, stenosis severity measurements and blooming artifacts decreased at increasing VMI reconstruction levels. CLINICAL IMPACT. PCD CT with VMI reconstruction helps overcome current limitations in stenosis quantification on coronary CTA.


Asunto(s)
Estenosis Coronaria , Placa Aterosclerótica , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Angiografía por Tomografía Computarizada/métodos , Estudios Retrospectivos , Constricción Patológica , Tomografía Computarizada por Rayos X/métodos , Estenosis Coronaria/diagnóstico por imagen
7.
J Thorac Imaging ; 39(2): 127-135, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982533

RESUMEN

BACKGROUND: Cardiac magnetic resonance imaging protocols have been adapted to fit the needs for faster, more efficient acquisitions, resulting in the development of highly accelerated, compressed sensing-based (CS) sequences. The aim of this study was to evaluate intersoftware and interacquisition differences for postprocessing software applied to both CS and conventional cine sequences. MATERIALS AND METHODS: A total of 106 individuals (66 healthy volunteers, 40 patients with dilated cardiomyopathy, 51% female, 38±17 y) underwent cardiac magnetic resonance at 3T with retrospectively gated conventional cine and CS sequences. Postprocessing was performed using 2 commercially available software solutions and 1 research prototype from 3 different developers. The agreement of clinical and feature-tracking strain parameters between software solutions and acquisition types was assessed by Bland-Altmann analyses and intraclass correlation coefficients. Differences between softwares and acquisitions were assessed using Kruskal-Wallis analysis of variances. In addition, receiver operating characteristic curve-derived cutoffs were used to evaluate whether sequence-specific cutoffs influence disease classification. RESULTS: There were significant intersoftware ( P <0.002 for all except LV end-diastolic volume per body surface area) and interacquisition differences ( P <0.02 for all except end-diastolic volume per body surface area from Neosoft, left ventricular mass per body surface area from cvi42 and TrufiStrain and global circumferential strain from Neosoft). However, the intraclass correlation coefficients between acquisitions were strong-to-excellent for all parameters (all ≥0.81). In comparing individual softwares to a pooled mean, Bland-Altmann analyses revealed smaller magnitudes of bias for cine acquisition than for CS acquisition. In addition, the application of conventional cutoffs to CS measurements did not result in the false reclassification of patients. CONCLUSION: Significantly lower magnitudes of strain and volumetric parameters were observed in retrospectively gated CS acquisitions, despite strong-to-excellent agreement amongst software solutions and acquisition types. It remains important to be aware of the acquisition type in the context of follow-up examinations, where different cutoffs might lead to misclassifications.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Cinemagnética , Humanos , Femenino , Masculino , Estudios Retrospectivos , Imagen por Resonancia Cinemagnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Ventrículos Cardíacos , Función Ventricular Izquierda
8.
Diagnostics (Basel) ; 13(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38066763

RESUMEN

Photon-counting detector computed tomography (PCD-CT) yields improved spatial resolution. The combined use of PCD-CT and a modern iterative reconstruction method, known as quantum iterative reconstruction (QIR), has the potential to significantly improve the quality of lung CT images. In this study, we aimed to analyze the impacts of different slice thicknesses and QIR levels on low-dose ultra-high-resolution (UHR) PCD-CT imaging of the lungs. Our study included 51 patients with different lung diseases who underwent unenhanced UHR-PCD-CT scans. Images were reconstructed using three different slice thicknesses (0.2, 0.4, and 1.0 mm) and three QIR levels (2-4). Noise levels were determined in all reconstructions. Three raters evaluated the delineation of anatomical structures and conspicuity of various pulmonary pathologies in the images compared to the clinical reference reconstruction (1.0 mm, QIR-3). The highest QIR level (QIR-4) yielded the best image quality. Reducing the slice thickness to 0.4 mm improved the delineation and conspicuity of pathologies. The 0.2 mm reconstructions exhibited lower image quality due to high image noise. In conclusion, the optimal reconstruction protocol for low-dose UHR-PCD-CT of the lungs includes a slice thickness of 0.4 mm, with the highest QIR level. This optimized protocol might improve the diagnostic accuracy and confidence of lung imaging.

9.
BMC Med Imaging ; 23(1): 187, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968580

RESUMEN

PURPOSE: Kidney volume is important in the management of renal diseases. Unfortunately, the currently available, semi-automated kidney volume determination is time-consuming and prone to errors. Recent advances in its automation are promising but mostly require contrast-enhanced computed tomography (CT) scans. This study aimed at establishing an automated estimation of kidney volume in non-contrast, low-dose CT scans of patients with suspected urolithiasis. METHODS: The kidney segmentation process was automated with 2D Convolutional Neural Network (CNN) models trained on manually segmented 2D transverse images extracted from low-dose, unenhanced CT scans of 210 patients. The models' segmentation accuracy was assessed using Dice Similarity Coefficient (DSC), for the overlap with manually-generated masks on a set of images not used in the training. Next, the models were applied to 22 previously unseen cases to segment kidney regions. The volume of each kidney was calculated from the product of voxel number and their volume in each segmented mask. Kidney volume results were then validated against results semi-automatically obtained by radiologists. RESULTS: The CNN-enabled kidney volume estimation took a mean of 32 s for both kidneys in a CT scan with an average of 1026 slices. The DSC was 0.91 and 0.86 and for left and right kidneys, respectively. Inter-rater variability had consistencies of ICC = 0.89 (right), 0.92 (left), and absolute agreements of ICC = 0.89 (right), 0.93 (left) between the CNN-enabled and semi-automated volume estimations. CONCLUSION: In our work, we demonstrated that CNN-enabled kidney volume estimation is feasible and highly reproducible in low-dose, non-enhanced CT scans. Automatic segmentation can thereby quantitatively enhance radiological reports.


Asunto(s)
Redes Neurales de la Computación , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Cintigrafía , Riñón/diagnóstico por imagen , Automatización , Procesamiento de Imagen Asistido por Computador/métodos
10.
Contemp Clin Trials ; 135: 107384, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949165

RESUMEN

OBJECTIVES: Medical imaging plays an essential role in healthcare. As a diagnostic test, imaging is prone to substantial overuse and potential overdiagnosis, with dire consequences to patient outcomes and health care costs. Clinical decision support systems (CDSSs) were developed to guide referring physicians in making appropriate imaging decisions. This study will evaluate the effect of implementing a CDSS (ESR iGuide) with versus without active decision support in a physician order entry on the appropriate use of imaging tests and ordering behaviour. METHODS: A protocol for a multi-center cluster-randomized trial with departments acting as clusters, combined with a before-after-revert design. Four university hospitals with eight participating departments each for a total of thirty-two clusters will be included in the study. All departments start in control condition with structured data entry of the clinical indication and tracking of the imaging exams requested. Initially, the CDSS is implemented and all physicians remain blinded to appropriateness scores based on the ESR imaging referral guidelines. After randomization, half of the clusters switch to the active intervention of decision support. Physicians in the active condition are made aware of the categorization of their requests as appropriate, under certain conditions appropriate, or inappropriate, and appropriate exams are suggested. Physicians may change their requests in response to feedback. In the revert condition, active decision support is removed to study the educational effect. RESULTS/CONCLUSIONS: The main outcome is the proportion of inappropriate diagnostic imaging exams requested per cluster. Secondary outcomes are the absolute number of imaging exams, radiation from diagnostic imaging, and medical costs. TRIAL REGISTRATION NUMBER: Approval from the Medical Ethics Review Committee was obtained under protocol numbers 20-069 (Augsburg), B 238/21 (Kiel), 20-318 (Lübeck) and 2020-15,125 (Mainz). The trial is registered in the ClinicalTrials.gov register under registration number NCT05490290.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Humanos , Diagnóstico por Imagen , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
11.
Eur Radiol Exp ; 7(1): 59, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37875769

RESUMEN

BACKGROUND: Photon-counting detector computed tomography (PCD-CT) may influence imaging characteristics for various clinical conditions due to higher signal and contrast-to-noise ratio in virtual monoenergetic images (VMI). Radiomics analysis relies on quantification of image characteristics. We evaluated the impact of different VMI reconstructions on radiomic features in in vitro and in vivo PCD-CT datasets. METHODS: An organic phantom consisting of twelve samples (four oranges, four onions, and four apples) was scanned five times. Twenty-three patients who had undergone coronary computed tomography angiography on a first generation PCD-CT system with the same image acquisitions were analyzed. VMIs were reconstructed at 6 keV levels (40, 55, 70, 90, 120, and 190 keV). The phantoms and the patients' left ventricular myocardium (LVM) were segmented for all reconstructions. Ninety-three original radiomic features were extracted. Repeatability and reproducibility were evaluated through intraclass correlations coefficient (ICC) and post hoc paired samples ANOVA t test. RESULTS: There was excellent repeatability for radiomic features in phantom scans (all ICC = 1.00). Among all VMIs, 36/93 radiomic features (38.7%) in apples, 28/93 (30.1%) in oranges, and 33/93 (35.5%) in onions were not significantly different. For LVM, the percentage of stable features was high between VMIs ≥ 90 keV (90 versus 120 keV, 77.4%; 90 versus 190 keV, 83.9%; 120 versus 190 keV, 89.3%), while comparison to lower VMI levels led to fewer reproducible features (40 versus 55 keV, 8.6%). CONCLUSIONS: VMI levels influence the stability of radiomic features in an organic phantom and patients' LVM; stability decreases considerably below 90 keV. RELEVANCE STATEMENT: Spectral reconstructions significantly influence radiomic features in vitro and in vivo, necessitating standardization and careful attention to these reconstruction parameters before clinical implementation. KEY POINTS: • Radiomic features have an excellent repeatability within the same PCD-CT acquisition and reconstruction. • Differences in VMI lead to decreased reproducibility for radiomic features. • VMI ≥ 90 keV increased the reproducibility of the radiomic features.


Asunto(s)
Imagen Radiográfica por Emisión de Doble Fotón , Humanos , Reproducibilidad de los Resultados , Relación Señal-Ruido , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Tomografía Computarizada por Rayos X/métodos , Miocardio
12.
Abdom Radiol (NY) ; 48(11): 3520-3529, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37466646

RESUMEN

PURPOSE: To investigate the epidemiology and distribution of disease characteristics of urolithiasis by data mining structured radiology reports. METHODS: The content of structured radiology reports of 2028 urolithiasis CTs was extracted from the department's structured reporting (SR) platform. The investigated cohort represented the full spectrum of a tertiary care center, including mostly symptomatic outpatients as well as inpatients. The prevalences of urolithiasis in general and of nephro- and ureterolithasis were calculated. The distributions of age, sex, calculus size, density and location, and the number of ureteral and renal calculi were calculated. For ureterolithiasis, the impact of calculus characteristics on the degree of possible obstructive uropathy was calculated. RESULTS: The prevalence of urolithiasis in the investigated cohort was 72%. Of those patients, 25% had nephrolithiasis, 40% ureterolithiasis, and 35% combined nephro- and ureterolithiasis. The sex distribution was 2.3:1 (M:F). The median patient age was 50 years (IQR 36-62). The median number of calculi per patient was 1. The median size of calculi was 4 mm, and the median density was 734 HU. Of the patients who suffered from ureterolithiasis, 81% showed obstructive uropathy, with 2nd-degree uropathy being the most common. Calculus characteristics showed no impact on the degree of obstructive uropathy. CONCLUSION: SR-based data mining is a simple method by which to obtain epidemiologic data and distributions of disease characteristics, for the investigated cohort of urolithiasis patients. The added information can be useful for multiple purposes, such as clinical quality assurance, radiation protection, and scientific or economic investigations. To benefit from these, the consistent use of SR is mandatory. However, in clinical routine SR usage can be elaborate and requires radiologists to adapt.

13.
Int J Cardiovasc Imaging ; 39(10): 2083-2092, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37452987

RESUMEN

This study assessed the impact of cardiac motion and in-vessel attenuation on coronary artery calcium (CAC) scoring using virtual non-iodine (VNI) against virtual non-contrast (VNC) reconstructions on photon-counting detector CT. Two artificial vessels containing calcifications and different in-vessel attenuations (500, 800HU) were scanned without (static) and with cardiac motion (60, 80, 100 beats per minute [bpm]). Images were post-processed using a VNC and VNI algorithm at 70 keV and quantum iterative reconstruction (QIR) strength 2. Calcium mass, Agatston scores, cardiac motion susceptibility (CMS)-indices were compared to physical mass, static scores as well as between reconstructions, heart rates and in-vessel attenuations. VNI scores decreased with rising heart rate (p < 0.01) and showed less underestimation than VNC scores (p < 0.001). Only VNI scores were similar to the physical mass at static measurements, and to static scores at 60 bpm. Agatston scores using VNI were similar to static scores at 60 and 80 bpm. Standard deviation of CMS-indices was lower for VNI-based than for VNC-based CAC scoring. VNI scores were higher at 500 than 800HU (p < 0.001) and higher than VNC scores (p < 0.001) with VNI scores at 500 HU showing the lowest deviation from the physical reference. VNI-based CAC quantification is influenced by cardiac motion and in-vessel attenuation, but least when measuring Agatston scores, where it outperforms VNC-based CAC scoring.

15.
Diagnostics (Basel) ; 13(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37443565

RESUMEN

Persistent or recurrent cardiovascular symptoms have been identified as one of the hallmarks of long-COVID or post-acute sequelae of SARS-CoV-2 infection (PASC). The purpose of this study was to determine the prevalence and extent of cardiac abnormalities in patients referred for cardiac MRI due to clinical evidence of PASC. To investigate this, two tertiary care hospitals identified all patients who were referred for cardiac MRI under the suspicion of PASC in a 2-year period and retrospectively included them in this study. Patients with previously known cardiac diseases were excluded. This resulted in a total cohort of 129 patients (63, 51% female; age 41 ± 16 years). The majority of patients (57%) showed normal cardiac results. No patient had active myocarditis or an acute myocardial infarction. However, 30% of patients had evidence of non-ischemic myocardial fibrosis, which exceeds the prevalence in the normal adult population and suggests that a possible history of myocarditis might explain persistent symptoms in the PASC setting.

16.
Cancer Imaging ; 23(1): 69, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480062

RESUMEN

BACKGROUND: Excellent image quality is crucial for workup of hepatocellular carcinoma (HCC) in patients with liver cirrhosis because a signature tumor signal allows for non-invasive diagnosis without histologic proof. Photon-counting detector computed tomography (PCD-CT) can enhance abdominal image quality, especially in combination with a novel iterative reconstruction algorithm, quantum iterative reconstruction (QIR). The purpose of this study was to analyze the impact of different QIR levels on PCD-CT imaging of HCC in both phantom and patient scans. METHODS: Virtual monoenergetic images at 50 keV were reconstructed using filtered back projection and all available QIR levels (QIR 1-4). Objective image quality properties were investigated in phantom experiments. The study also included 44 patients with triple-phase liver PCD-CT scans of viable HCC lesions. Quantitative image analysis involved assessing the noise, contrast, and contrast-to-noise ratio of the lesions. Qualitative image analysis was performed by three raters evaluating noise, artifacts, lesion conspicuity, and overall image quality using a 5-point Likert scale. RESULTS: Noise power spectra in the phantom experiments showed increasing noise suppression with higher QIR levels without affecting the modulation transfer function. This pattern was confirmed in the in vivo scans, in which the lowest noise levels were found in QIR-4 reconstructions, with around a 50% reduction in median noise level compared with the filtered back projection images. As contrast does not change with QIR, QIR-4 also yielded the highest contrast-to-noise ratios. With increasing QIR levels, rater scores were significantly better for all qualitative image criteria (all p < .05). CONCLUSIONS: Without compromising image sharpness, the best image quality of iodine contrast optimized low-keV virtual monoenergetic images can be achieved using the highest QIR level to suppress noise. Using these settings as standard reconstruction for HCC in PCD-CT imaging might improve diagnostic accuracy and confidence.


Asunto(s)
Carcinoma Hepatocelular , Yodo , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Algoritmos
17.
J Cardiovasc Magn Reson ; 25(1): 33, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37331991

RESUMEN

BACKGROUND: MRI T2 mapping has been proven to be sensitive to the level of blood oxygenation. We hypothesized that impaired exercise capacity in chronic heart failure is associated with a greater difference between right (RV) to left ventricular (LV) blood pool T2 relaxation times due to a higher level of peripheral blood desaturation, compared to patients with preserved exercise capacity and to healthy controls. METHODS: Patients with chronic heart failure (n = 70) who had undergone both cardiac MRI (CMR) and a 6-min walk test (6MWT) were retrospectively identified. Propensity score matched healthy individuals (n = 35) served as control group. CMR analyses included cine acquisitions and T2 mapping to obtain blood pool T2 relaxation times of the RV and LV. Following common practice, age- and gender-adjusted nominal distances and respective percentiles were calculated for the 6MWT. The relationship between the RV/LV T2 blood pool ratio and the results from 6MWT were evaluated by Spearman's correlation coefficients and regression analyses. Inter-group differences were assessed by independent t-tests and univariate analysis of variance. RESULTS: The RV/LV T2 ratio moderately correlated with the percentiles of nominal distances in the 6MWT (r = 0.66) while ejection fraction, end-diastolic and end-systolic volumes showed no correlation (r = 0.09, 0.07 and - 0.01, respectively). In addition, there were significant differences in the RV/LV T2 ratio between patients with and without significant post-exercise dyspnea (p = 0.001). Regression analyses showed that RV/LV T2 ratio was an independent predictor of the distance walked and the presence of post-exercise dyspnea (p < 0.001). CONCLUSION: The proposed RV/LV T2 ratio, obtained by two simple measurements on a routinely acquired four-chamber T2 map, was superior to established parameters of cardiac function to predict exercise capacity and the presence of post-exercise dyspnea in patients with chronic heart failure.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Humanos , Estudios Retrospectivos , Tolerancia al Ejercicio , Valor Predictivo de las Pruebas , Imagen por Resonancia Magnética , Insuficiencia Cardíaca/diagnóstico por imagen , Volumen Sistólico , Función Ventricular Izquierda , Función Ventricular Derecha
18.
Diagnostics (Basel) ; 13(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37296789

RESUMEN

(1) Background: Photon-counting detector (PCD) CT offers a wide variety of kernels and sharpness levels for image reconstruction. The aim of this retrospective study was to determine optimal settings for coronary CT angiography (CCTA). (2) Methods: Thirty patients (eight female, mean age 63 ± 13 years) underwent PCD-CCTA in a high-pitch mode. Images were reconstructed using three different kernels and four sharpness levels (Br36/40/44/48, Bv36/40/44/48, and Qr36/40/44/48). To analyze objective image quality, the attenuation, image noise, contrast-to-noise ratio (CNR), and vessel sharpness were quantified in proximal and distal coronaries. For subjective image quality, two blinded readers assessed image noise, visually sharp reproduction of coronaries, and the overall image quality using a five-point Likert scale. (3) Results: Attenuation, image noise, CNR, and vessel sharpness significantly differed across kernels (all p < 0.001), with the Br-kernel reaching the highest attenuation. With increasing kernel sharpness, image noise and vessel sharpness increased, whereas CNR continuously decreased. Reconstruction with Br-kernel generally had the highest CNR (Br > Bv > Qr), except Bv-kernel had a superior CNR at sharpness level 40. Bv-kernel had significantly higher vessel sharpness than Br- and Qr-kernel (p < 0.001). Subjective image quality was rated best for kernels Bv40 and Bv36, followed by Br36 and Qr36. (4) Conclusion: Reconstructions with kernel Bv40 are beneficial to achieve optimal image quality in spectral high-pitch CCTA using PCD-CT.

19.
Insights Imaging ; 14(1): 61, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37037963

RESUMEN

BACKGROUND: To evaluate the implementation process of structured reporting (SR) in a tertiary care institution over a period of 7 years. METHODS: We analysed the content of our image database from January 2016 to December 2022 and compared the numbers of structured reports and free-text reports. For the ten most common SR templates, usage proportions were calculated on a quarterly basis. Annual modality-specific SR usage was calculated for ultrasound, CT, and MRI. During the implementation process, we surveyed radiologists and clinical referring physicians concerning their views on reporting in radiology. RESULTS: As of December 2022, our reporting platform contained more than 22,000 structured reports. Use of the ten most common SR templates increased markedly since their implementation, leading to a mean SR usage of 77% in Q4 2022. The highest percentages of SR usage were shown for trauma CT, focussed assessment with ultrasound for trauma (FAST), and prostate MRI: 97%, 95%, and 92%, respectively, in 2022. Overall modality-specific SR usage was 17% for ultrasound, 13% for CT, and 6% for MRI in 2022. Both radiologists and referring physicians were more satisfied with structured reports and rated SR better than free-text reporting (FTR) on various attributes. CONCLUSIONS: The increasing SR usage during the period under review and the positive attitude towards SR among both radiologists and clinical referrers show that SR can be successfully implemented. We therefore encourage others to take this step in order to benefit from the advantages of SR. KEY POINTS: 1. Structured reporting usage increased markedly since its implementation at our institution in 2016. 2. Mean usage for the ten most popular structured reporting templates was 77% in 2022. 3. Both radiologists and referring physicians preferred structured reports over free-text reports. 4. Our data shows that structured reporting can be successfully implemented. 5. We strongly encourage others to implement structured reporting at their institutions.

20.
Eur Radiol ; 33(3): 2039-2051, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36322192

RESUMEN

OBJECTIVES: Cardiac involvement in Anderson-Fabry disease (AFD) results in myocardial lipid depositions. An early diagnosis can maximize therapeutic benefit. Thus, this study aims to investigate the potential of cardiac MRI (CMR) based parameters of left atrial (LA) function and strain to detect early stages of AFD. METHODS: Patients (n = 58, age 40 (29-51) years, 31 female) with genetically proven AFD had undergone CMR including left ventricular (LV) volumetry, mass index (LVMi), T1, and late gadolinium enhancement, complemented by LA and LV strain measurements and atrial emptying fractions. Patients were stratified into three disease phases and compared to age and sex-matched healthy controls (HC, n = 58, age 41 [26-56] years, 31 female). RESULTS: A total of 19 early-, 20 intermediate-, and 19 advanced-phase patients were included. LV and LA reservoir strain was significantly impaired in all AFD phases, including early disease (both p < 0.001). In contrast, LA volumetry, T1, and LVMi showed no significant differences between the early phase and HC (p > 0.05). In the intermediate phase, LVMi and T1 demonstrated significant differences. In advanced phase, all parameters except active emptying fractions differed significantly from HC. ROC curve analyses of early disease phases revealed superior diagnostic confidence for the LA reservoir strain (AUC 0.88, sensitivity 89%, specificity 75%) over the LV strain (AUC 0.82). CONCLUSIONS: LA reservoir strain showed impairment in early AFD and significantly correlated with disease severity. The novel approach performed better in identifying early disease than the established approach using LVMi and T1. Further studies are needed to evaluate whether these results justify earlier initiation of therapy and help minimize cardiac complications. KEY POINTS: • Parameters of left atrial function and deformation showed impairments in the early stages of Anderson-Fabry disease and correlated significantly with the severity of Anderson-Fabry disease. • Left atrial reservoir strain performed superior to ventricular strain in detecting early myocardial involvement in Anderson-Fabry disease and improved diagnostic accuracies of approaches already using ventricular strain. • Further studies are needed to evaluate whether earlier initiation of enzyme replacement therapy based on these results can help minimize cardiac complications from Anderson-Fabry disease.


Asunto(s)
Fibrilación Atrial , Enfermedad de Fabry , Cardiopatías , Humanos , Femenino , Adulto , Enfermedad de Fabry/diagnóstico por imagen , Enfermedad de Fabry/complicaciones , Medios de Contraste , Gadolinio , Atrios Cardíacos/diagnóstico por imagen , Cardiopatías/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...