Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geophys Res Lett ; 49(15): e2022GL099655, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36247517

RESUMEN

Microbursts are impulsive (<1 s) injections of electrons into the atmosphere, thought to be caused by nonlinear scattering by chorus waves. Although attempts have been made to quantify their contribution to outer belt electron loss, the uncertainty in the overall size and duration of the microburst region is typically large, so that their contribution to outer belt loss is uncertain. We combine datasets that measure chorus waves (Van Allen Probes [RBSP], Arase, ground-based VLF stations) and microburst (>30 keV) precipitation (FIREBIRD II and AC6 CubeSats, POES) to determine the size of the microburst-producing chorus source region beginning on 5 December 2017. We estimate that the long-lasting (∼30 hr) microburst-producing chorus region extends from 4 to 8 Δ MLT and 2-5 Δ L. We conclude that microbursts likely represent a major loss source of outer radiation belt electrons for this event.

2.
J Geophys Res Space Phys ; 125(12): e2020JA028462, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33520562

RESUMEN

Curtain precipitation is a recently discovered stationary, persistent, and latitudinally narrow electron precipitation phenomenon in low Earth orbit. Curtains are observed over consecutive passes of the dual AeroCube-6 CubeSats while their in-track lag varied from a fraction of a second to 65 s, with dosimeters that are sensitive to >35-keV electrons. This study uses the AeroCube-6 mission to quantify the statistical properties of 1,634 curtains observed over 3 years. We found that many curtains are narrower than 10 km in the latitudinal direction with 90% narrower than 20 km. We examined the geographic, magnetic local time, and geomagnetic dependence of curtains. We found that curtains are observed in the late-morning and premidnight magnetic local times, with a higher occurrence rate at premidnight, and curtains are observed more often during times of enhanced Auroral Electrojet. We found a few curtains in the bounce loss cone region above the North Atlantic, whose electrons were continuously scattered for at least 6 s. Such observations suggest that continuous curtain precipitation may be a significant loss of >35-keV electrons from the magnetosphere into the atmosphere. We hypothesize that the curtains observed in the bounce loss cone were accelerated by parallel electric fields, and we show that this mechanism is consistent with the observations.

3.
Space Sci Rev ; 215(1): 9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30880847

RESUMEN

With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have "crib-sheets," user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer's Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its "modes of use" with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11214-018-0576-4) contains supplementary material, which is available to authorized users.

4.
J Geophys Res Space Phys ; 120(6): 4922-4935, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26937330

RESUMEN

BARREL observed electron precipitation over wide range of energy and timescalesPrecipitating electron distribution is determined using spectroscopy for 19 January 2013 eventBARREL timing data has accuracy within sampling interval of 0.05 s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...