Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5071, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429338

RESUMEN

The Ebinur Lake Basin is an ecologically sensitive area in an arid region. Investigating its land use and land cover (LULC) change and assessing and predicting its ecosystem service value (ESV) are of great importance for the stability of the basin's socioeconomic development and sustainable development of its ecological environment. Based on LULC data from 1990, 2000, 2010, and 2020, we assessed the ESV of the Ebinur Lake Basin and coupled the grey multi-objective optimization model with the patch generation land use simulation model to predict ESV changes in 2035 under four scenarios: business-as-usual (BAU) development, rapid economic development (RED), ecological protection (ELP), and ecological-economic balance (EEB). The results show that from 1990 to 2020, the basin was dominated by grassland (51.23%) and unused land (27.6%), with a continuous decrease in unused land and an increase in cultivated land. In thirty years, the total ESV of the study area increased from 18.62 billion to 67.28 billion yuan, with regulation and support services being the dominant functions. By 2035, cultivated land increased while unused land decreased in all four scenarios compared with that in 2020. The total ESV in 2035 under the BAU, RED, ELP, and EEB scenarios was 68.83 billion, 64.47 billion, 67.99 billion, and 66.79 billion yuan, respectively. In the RED and EEB scenarios, ESV decreased by 2.81 billion and 0.49 billion yuan, respectively. In the BAU scenario, provisioning and regulation services increased by 6.05% and 2.93%, respectively. The ELP scenario, focusing on ecological and environmental protection, saw an increase in ESV for all services. This paper can assist policymakers in optimizing land use allocation and provide scientific support for the formulation of land use strategies and sustainable ecological and environmental development in the inland river basins of arid regions.

2.
PLoS One ; 19(2): e0297860, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330009

RESUMEN

The ecological security of oasis cities in arid and semi-arid regions is highly susceptible to changes in regional landscape patterns and the degree of coordination between human activities and the environment. At the same time, the ecological security of urban landscapes also profoundly affects the success of regional economic and environmental coordination and development. This study is based on land use data from 1990, 2000, 2010, and 2020, as well as land use data from the natural development scenario (NLD), economic development scenario (ECD), ecological development scenario (ELD) and ecological-economic development scenario (EED) simulated by the patch-generating land use simulation (PLUS) model in 2030. From the perspective of production-living-ecological land (PLEL), it analyzes the changes in the past and future landscape ecological security and coupling coordination characteristics of Bole. The results show that from 1990 to 2020, Bole was mainly dominated by grassland ecological land (GEL) and other ecological land (OEL), accounting for a total proportion of 69.51%, with a large increase in production and living land area; the average value of landscape ecological risk is decreasing, and the landscape ecological security of Bole is developing towards benignity; the area of highly coupled coordination zone is decreasing continuously, while that of basic coordination zone and moderate coordination zone is increasing continuously. Under the 2030 EED scenario, the overall changes in various types of land use are not significant, and the average value of landscape ecological risk is the smallest, but it is higher than that in 2020 as a whole; under EED scenario, the area of highly coordinated zone and moderate coordinated zone is the largest among four scenarios, and the best coupling coordination level among the four scenarios. Landscape ecological security and its coupling coordination will be affected by land use patterns. Optimizing regional land use patterns is of great significance for improving urban landscape ecological security and sustainable high-quality development.


Asunto(s)
Ecología , Ecosistema , Humanos , Conservación de los Recursos Naturales/métodos , Ciudades , Simulación por Computador , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...