Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncogene ; 38(27): 5367-5380, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30967630

RESUMEN

Glioblastoma (GBM) is the most aggressive tumor of the brain. NF1, a tumor suppressor gene and RAS-GTPase, is one of the highly mutated genes in GBM. Dysregulated NF1 expression promotes cell invasion, proliferation, and tumorigenesis. Loss of NF1 expression in glioblastoma is associated with increased aggressiveness of the tumor. Here, we show that NF1-loss in patient-derived glioma cells using shRNA increases self-renewal, heightens cell invasion, and promotes mesenchymal subtype and epithelial mesenchymal transition-specific gene expression that enhances tumorigenesis. The neurofibromin protein contains at least four major domains, with the GAP-related domain being the most well-studied. In this study, we report that the leucine-rich domain (LRD) of neurofibromin inhibits invasion of human glioblastoma cells without affecting their proliferation. Moreover, under conditions tested, the NF1-LRD fails to hydrolyze Ras-GTP to Ras-GDP, suggesting that its suppressive function is independent of Ras signaling. We further demonstrate that rare variants within the NF1-LRD domain found in a subset of the patients are pathogenic and reduce NF1-LRD's invasion suppressive function. Taken together, our results show, for the first time, that NF1-LRD inhibits glioma invasion, and provides evidence of a previously unrecognized function of NF1-LRD in glioma biology.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Leucina/metabolismo , Mutación , Invasividad Neoplásica/genética , Neurofibromina 1/genética , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neurofibromina 1/metabolismo
2.
Angew Chem Int Ed Engl ; 56(27): 7822-7825, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28524544

RESUMEN

Butelase-mediated ligation (BML) can be used to modify live bacterial cell surfaces with diverse cargo molecules. Surface-displayed butelase recognition motif NHV was first introduced at the C-terminal end of the anchoring protein OmpA on E. coli cells. This then served as a handle of BML for the functionalization of E. coli cell surfaces with fluorescein and biotin tags, a tumor-associated monoglycosylated peptide, and mCherry protein. The cell-surface ligation reaction was achieved at low concentrations of butelase and the labeling substrates. Furthermore, the fluorescein-labeled bacterial cells were used to show the interactions with cultured HeLa cells and with macrophages in live transgenic zebrafish, capturing the latter's powerful phagocytic effect in action. Together these results highlight the usefulness of butelase 1 in live bacterial cell surface engineering for novel applications.


Asunto(s)
Escherichia coli/metabolismo , Glicopéptidos/metabolismo , Ligasas/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Clitoria/enzimología , Escherichia coli/química , Glicopéptidos/química , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Lisosomas/química , Lisosomas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Microscopía Confocal , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA