Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105672, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272229

RESUMEN

"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.


Asunto(s)
Regulación Alostérica , Sitio Alostérico , Ligandos , Termodinámica , Humanos , Animales , Biocatálisis , Pliegue de Proteína , Proteínas/metabolismo
2.
Blood ; 141(24): 2993-3005, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023370

RESUMEN

Antibody binding to a plasma metalloprotease, a disintegrin and metalloproteinase with thrombospondin type 1 repeats 13 (ADAMTS13), is necessary for the development of immune thrombotic thrombocytopenic purpura (iTTP). Inhibition of ADAMTS13-mediated von Willebrand factor (VWF) cleavage by such antibodies clearly plays a role in the pathophysiology of the disease, although the mechanisms by which they inhibit ADAMTS13 enzymatic function are not fully understood. At least some immunoglobulin G-type antibodies appear to affect the conformational accessibility of ADAMTS13 domains involved in both substrate recognition and inhibitory antibody binding. We used single-chain fragments of the variable region previously identified via phage display from patients with iTTP to explore the mechanisms of action of inhibitory human monoclonal antibodies. Using recombinant full-length ADAMTS13, truncated ADAMTS13 variants, and native ADAMTS13 in normal human plasma, we found that, regardless of the conditions tested, all 3 inhibitory monoclonal antibodies tested affected enzyme turnover rate much more than substrate recognition of VWF. Hydrogen-to-deuterium exchange plus mass spectrometry experiments with each of these inhibitory antibodies demonstrated that residues in the active site of the catalytic domain of ADAMTS13 are differentially exposed to solvent in the presence and absence of monoclonal antibody binding. These results support the hypothesis that inhibition of ADAMTS13 in iTTP may not necessarily occur because the antibodies directly prevent VWF binding, but instead because of allosteric effects that impair VWF cleavage, likely by affecting the conformation of the catalytic center in the protease domain of ADAMTS13. Our findings provide novel insight into the mechanism of autoantibody-mediated inhibition of ADAMTS13 and pathogenesis of iTTP.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Púrpura Trombocitopénica Trombótica , Trombosis , Humanos , Anticuerpos Monoclonales , Factor de von Willebrand/metabolismo , Proteínas ADAM/química , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Autoanticuerpos
3.
Cureus ; 14(9): e29091, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36249631

RESUMEN

OBJECTIVE: We aimed to analyze the Health Care Utilization Project's (HCUP) Nationwide Inpatient Sample (NIS) and compare mortality rates in hospitals by month to determine if there is seasonal variability in outcomes associated with venous thromboembolism (VTE). METHODS: The Nationwide Inpatient Sample database was queried from 1998 to 2011. Inclusion criteria were a diagnosis of deep vein thrombosis (DVT) (ICD-9 {International Classification of Diseases, Ninth Revision, Clinical Modification} 453.4, 453.8) and/or VTE (ICD-9 415.1) in patients aged 18 years or more. Admission data was then analyzed to compare mortality rates in teaching and non-teaching hospitals over that time and by month. Demographics, Charlson Comorbidity Index, length of stay (LOS), hospital region, and admission types (emergent/urgent versus elective admissions) were assessed. Linear and logistic models were generated for complex survey design to analyze predictors of mortality and LOS. RESULTS: A total of 1,449,113 DVT/VTE cases were identified in the Nationwide Inpatient Sample (weighted n= 7,150,613), 54.7% female, 56.38% white, 49% in teaching hospitals. Higher mortality was found in the months of November 6.52%, December 6.9%, January 6.94%, and February 6.93% versus overall mortality of 6.4% over 12 months. Higher mortality was noted in these winter months in all regions, along with a significantly increased LOS. Mortality in the total cohort was found to be higher in January, with odds ratio (OR) 1.11 (1.08-1.15), p<0.0001; February, OR 1.11 (1.07-1.15), p<0.0001; and December, OR 1.10 (1.06-1.14), p<0.0001 compared to June. Mortality was significantly lower in the Midwest or North Central regions (OR 0.78 {0.72-0.83}, p<0.0001) and West (OR 0.80 {0.73-0.87}, p<0.0001) compared to the Northeast. Mortality was also significantly higher in teaching hospitals than in non-teaching hospitals (OR 1.16 {1.10-1.22}, p<0.0001), with mortality trending higher in teaching hospitals each month. Emergent/urgent admission, larger hospital size, female sex, age, and urban location were also significantly associated with increased mortality. CONCLUSIONS: This national study identified an increased risk of mortality associated with hospitalizations for DVT/VTE in the winter months, independent of hospital teaching status or region.

4.
J Thromb Haemost ; 20(10): 2197-2203, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35842925

RESUMEN

ADAMTS13, a plasma metalloprotease that cleaves von Willebrand factor, is crucial for normal hemostasis. Acquired autoantibody-mediated deficiency of plasma ADAMTS13 results in a potentially fatal blood disorder, immune thrombotic thrombocytopenic purpura (iTTP). Plasma ADAMTS13 protease appears to exist in multiple conformations. Under physiological conditions, plasma ADAMTS13 exists predominantly in its "closed" conformation (or latent form), which may be activated by lowering pH, ligand binding, and binding of an antibody against the distal domains of ADAMTS13. In patients with iTTP, polyclonal antibodies target at various domains of ADAMTS13. However, nearly all inhibitory antibodies bind the spacer domain, whereas antibodies that bind the distal C-terminal domains may activate ADAMTS13 through removing its allosteric inhibition. Additionally, the anti-C-terminal antibodies may alter the potency of inhibitory antibodies towards ADAMTS13 activity. This review summarizes some of the most recent knowledge about the ADAMTS13 conformation and its mechanism of inhibition by its autoantibodies.


Asunto(s)
Proteína ADAMTS13/química , Púrpura Trombocitopénica Idiopática , Púrpura Trombocitopénica Trombótica , Trombosis , Proteínas ADAM/química , Proteínas ADAM/metabolismo , Autoanticuerpos , Humanos , Ligandos , Factor de von Willebrand/metabolismo
5.
J Thromb Haemost ; 19(8): 1888-1895, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33834592

RESUMEN

BACKGROUND: Immune thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal thrombotic microangiopathy, resulting from a severe deficiency of plasma ADAMTS-13 (A Disintegrin And Metalloproteinase with ThromboSpondin type 1 motif, member 13) activity. IgG-type autoantibodies are primarily responsible for the inhibition of plasma ADAMTS-13 activity. However, the mechanism underlying autoantibody-mediated inhibition is not fully understood. OBJECTIVE: The purpose of the present study is to determine the role of IgG autoantibodies against various carboxyl-terminal domains of ADAMTS-13 in regulating ADAMTS-13 activity and its inhibition. METHOD: Various human monoclonal antibodies isolated by phage display, recombinant protein expression and purification, and biochemical analyses were employed for the study. RESULTS: Our results demonstrate for the first time that a human monoclonal antibody fragment, the single chain fragment of the variable region (scFv) isolated from a patient with acute iTTP that binds the distal carboxyl-terminus of ADAMTS-13, is able to activate ADAMTS-13 and increase the proteolytic cleavage of a FRETS-VWF73 substrate; moreover, binding of such a human monoclonal antibody against the carboxyl-terminus of ADAMTS-13 to plasma ADAMTS-13 appears to modulate inhibition by another human monoclonal antibody (i.e., scFv4-20), also isolated from an iTTP patient, that targets the spacer domain of ADAMTS-13. These results provide new insights into our understanding of the pathogenesis of iTTP.


Asunto(s)
Púrpura Trombocitopénica Trombótica , Proteína ADAMTS13 , Anticuerpos Monoclonales , Autoanticuerpos , Humanos , Trombospondina 1
6.
J Thromb Haemost ; 19(2): 370-379, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33188723

RESUMEN

BACKGROUND: Immune thrombotic thrombocytopenic purpura (iTTP) is a life-threatening blood disorder, primarily resulting from autoantibodies against ADAMTS13. Infection or inflammation often precedes acute iTTP. However, the association of inflammation and inflammatory mediators with disease severity and outcome of acute iTTP is not fully assessed. OBJECTIVES: Here, we determined plasma levels of S100A8/A9, histone/DNA complexes, citrullinated histone H3 (CitH3), and cell-free DNA (cfDNA) in a cohort of 108 acute episodes from 94 unique iTTP patients and healthy controls, and assessed the association of each of these biomarkers with the disease severity and mortality. RESULTS: All acute iTTP patients had significantly increased plasma levels of S100A8/A9 (median 84.8, interquartile range [IQR] 31.2-157.4 µg/mL), histone/DNA complexes (median 55.7, IQR 35.8-130.8 U/mL), CitH3 (median 3.8, IQR 2.2-6.4 ng/mL), and cfDNA (median 937.7, IQR 781.3-1420.0 ng/mL) on the admission blood samples when compared with healthy controls. An increased plasma level of S100A8/A9, histone/DNA complex and cfDNA was associated with organ damage, coagulopathy, and mortality in iTTP. After being adjusted for age and history of hypertension, Cox proportional hazard regression analysis demonstrated that a hazard ratio (95% confidence interval) for an elevated plasma level of S100A8/A9, histone/DNA complexes, and cfDNA was 11.5 (1.4-90.9) (P = .021), 10.3 (2.7-38.5) (P = .001), and 12.8 (3.9-42.0) (P = .014), respectively. CONCLUSION: These results indicate that inflammation or plasma inflammatory mediators such as S100A8/A9 or NETosis markers such as histone/DNA complexes and cfDNA may play a role in pathogenesis of iTTP, which may help stratify patients with a high risk of death during acute iTTP episodes.


Asunto(s)
Calgranulina A/sangre , Ácidos Nucleicos Libres de Células , Histonas , Púrpura Trombocitopénica Idiopática , Púrpura Trombocitopénica Trombótica , Calgranulina B/sangre , Ácidos Nucleicos Libres de Células/sangre , ADN , Humanos , Púrpura Trombocitopénica Idiopática/diagnóstico , Púrpura Trombocitopénica Trombótica/diagnóstico
7.
Thromb Haemost ; 121(4): 506-517, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33184803

RESUMEN

BACKGROUND: Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal blood disorder, resulting from autoantibodies against ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13). However, the mechanism underlying anti-ADAMTS13 autoantibody formation is not known, nor it is known how genetic aberrations contribute to the pathogenesis of iTTP. METHODS: Here we performed whole exome sequencing (WES) of DNA samples from 40 adult patients with iTTP and 15 local healthy subjects with no history of iTTP and other hematological disorders. RESULTS: WES revealed variations in the genes involved in protein glycosylation, including O-linked glycosylation, to be a major pathway affected in patients with iTTP. Moreover, variations in the ANKRD gene family, particularly ANKRD36C and its paralogs, were also more prevalent in patients with iTTP than in the healthy controls. The ANKRD36 family of proteins have been implicated in inflammation. Mass spectrometry revealed a dramatic alternation in plasma glycoprotein profile in patients with iTTP compared with the healthy controls. CONCLUSION: Altered glycosylation may affect the disease onset and progression in various ways: it may predispose patients to produce ADAMTS13 autoantibodies or affect their binding properties; it may also alter clearance kinetics of hemostatic and inflammatory proteins. Together, our findings provide novel insights into plausible mechanisms underlying the pathogenesis of iTTP.


Asunto(s)
Secuenciación del Exoma , Mutación , Púrpura Trombocitopénica Idiopática/genética , Proteína ADAMTS13/inmunología , Adulto , Autoanticuerpos/sangre , Estudios de Casos y Controles , Análisis Mutacional de ADN , Epistasis Genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glicómica , Glicoproteínas/sangre , Glicosilación , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Púrpura Trombocitopénica Idiopática/sangre , Púrpura Trombocitopénica Idiopática/diagnóstico , Púrpura Trombocitopénica Idiopática/inmunología
8.
Blood Adv ; 3(24): 4177-4186, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31856267

RESUMEN

Immune thrombotic thrombocytopenic purpura (iTTP) is primarily caused by immunoglobulin G (IgG)-type autoantibodies that bind and inhibit plasma ADAMTS13 activity and/or accelerate its clearance from circulation. Approximately 50% of patients with iTTP who achieve initial clinical response to therapy experience recurrence (ie, exacerbation and/or relapse); however, a reliable biomarker that predicts such an event is currently lacking. The present study determines the role of longitudinal assessments of plasma ADAMTS13 biomarkers in predicting iTTP exacerbation/recurrence. Eighty-three unique iTTP patients with 97 episodes from the University of Alabama at Birmingham Medical Center between April 2006 and June 2019 were enrolled. Plasma levels of ADAMTS13 activity, antigen, and anti-ADAMTS13 IgG on admission showed no significant value in predicting iTTP exacerbation or recurrence. However, persistently low plasma ADAMTS13 activity (<10 U/dL; hazard ratio [HR], 4.4; 95% confidence interval [CI], 1.6-12.5; P = .005) or high anti-ADAMTS13 IgG (HR, 3.1; 95% CI, 1.2-7.8; P = .016) 3 to 7 days after the initiation of therapeutic plasma exchange was associated with an increased risk for exacerbation or recurrence. Furthermore, low plasma ADAMTS13 activity (<10 IU/dL; HR, 4.8; 95% CI, 1.8-12.8; P = .002) and low ADAMTS13 antigen (<25th percentile; HR, 3.3; 95% CI, 1.3-8.2; P = .01) or high anti-ADAMTS13 IgG (>75th percentile; HR, 2.6; 95% CI, 1.0-6.5; P = .047) at clinical response or remission was also predictive of exacerbation or recurrence. Our results suggest the potential need for a more aggressive approach to achieve biochemical remission (ie, normalization of plasma ADAMTS13 activity, ADAMTS13 antigen, and anti-ADAMTS13 IgG) in patients with iTTP to prevent the disease recurrence.


Asunto(s)
Proteína ADAMTS13/sangre , Biomarcadores , Púrpura Trombocitopénica Trombótica/sangre , Púrpura Trombocitopénica Trombótica/diagnóstico , Proteína ADAMTS13/inmunología , Adulto , Autoanticuerpos/inmunología , Comorbilidad , Femenino , Humanos , Inmunoglobulina G/inmunología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pronóstico , Púrpura Trombocitopénica Trombótica/inmunología , Recurrencia
9.
PLoS Pathog ; 12(12): e1006098, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27992602

RESUMEN

Structural rearrangements of HIV-1 glycoprotein Env promote viral entry through membrane fusion. Env is a symmetric homotrimer with each protomer composed of surface subunit gp120 and transmembrane subunit gp41. Cellular CD4- and chemokine receptor-binding to gp120 coordinate conformational changes in gp41, first to an extended prehairpin intermediate (PHI) and, ultimately, into a fusogenic trimer-of-hairpins (TOH). HIV-1 fusion inhibitors target gp41 in the PHI and block TOH formation. To characterize structural transformations into and through the PHI, we employed asymmetric Env trimers containing both high and low affinity binding sites for individual fusion inhibitors. Asymmetry was achieved using engineered Env heterotrimers composed of protomers deficient in either CD4- or chemokine receptor-binding. Linking receptor engagement to inhibitor affinity allowed us to assess conformational changes of individual Env protomers in the context of a functioning trimer. We found that the transition into the PHI could occur symmetrically or asymmetrically depending on the stoichiometry of CD4 binding. Sequential engagement of multiple CD4s promoted progressive exposure of individual fusion inhibitor binding sites in a CD4-dependent fashion. By contrast, engagement of only a single CD4 molecule led to a delayed, but symmetric, exposure of the gp41 trimer. This complex coupling between Env-CD4 interaction and gp41 exposure explained the multiphasic fusion-inhibitor titration observed for a mutant Env homotrimer with a naturally asymmetric gp41. Our results suggest that the spatial and temporal exposure of gp41 can proceed in a nonconcerted, asymmetric manner depending on the number of CD4s that engage the Env trimer. The findings have important implications for the mechanism of viral membrane fusion and the development of vaccine candidates designed to elicit neutralizing antibodies targeting gp41 in the PHI.


Asunto(s)
Proteína gp41 de Envoltorio del VIH/química , VIH-1/fisiología , Internalización del Virus , Línea Celular , VIH-1/química , Humanos , Modelos Moleculares , Conformación Proteica
10.
RNA ; 15(10): 1827-36, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19696158

RESUMEN

The universally conserved CCA sequence is present at the 3' terminal 74-76 positions of all active tRNA molecules as a functional tag to participate in ribosome protein synthesis. The CCA enzyme catalyzes CCA synthesis in three sequential steps of nucleotide addition at rapid and identical rates. However, the kinetic determinant of each addition is unknown, thus limiting the insights into the kinetic basis of CCA addition. Using our recently developed single turnover kinetics of Escherichia coli CCA enzyme as a model, we show here that the identical rate of the stepwise CCA addition is determined by distinct kinetic parameters. Specifically, the kinetics of C74 and C75 addition is controlled by the chemistry of nucleotidyl transfer, whereas the kinetics of A76 addition is controlled by a prechemistry conformational transition of the active site. In multiple turnover condition, all three steps are controlled by slow product release, indicating enzyme processivity from one addition to the next. However, the processivity decreases as the enzyme progresses to complete the CCA synthesis. Together, these results suggest the existence of a network of diverse kinetic parameters that determines the overall rate of CCA addition for tRNA maturation.


Asunto(s)
ARN de Transferencia/química , Secuencia de Bases , Catálisis , Dominio Catalítico , Cinética , Conformación de Ácido Nucleico
11.
J Mol Biol ; 379(3): 579-88, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18466919

RESUMEN

CCA addition to the 3' end is an essential step in tRNA maturation. High-resolution crystal structures of the CCA enzymes reveal primary enzyme contact with the tRNA minihelix domain, consisting of the acceptor stem and T stem-loop. RNA and DNA minihelices are efficient substrates for CCA addition in steady-state kinetics. However, in contrast to structural models and steady-state experiments, we show here by single-turnover kinetics that minihelices are insufficient substrates for the Escherichia coli CCA enzyme and that only the full-length tRNA is kinetically competent. Even a nick in the full-length tRNA backbone in the T loop, or as far away from the minihelix domain as in the anticodon loop, prevents efficient CCA addition. These results suggest a kinetic quality control provided by the CCA enzyme to inspect the integrity of the tRNA molecule and to discriminate against nicked or damaged species from further maturation.


Asunto(s)
Secuencia de Bases , Conformación de Ácido Nucleico , ARN Nucleotidiltransferasas/metabolismo , ARN de Transferencia/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , ARN Nucleotidiltransferasas/química , ARN Nucleotidiltransferasas/genética , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...