Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865118

RESUMEN

The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically-evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on primary vascular endothelial cells in vitro and in vivo. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3Galt6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.

2.
Molecules ; 27(14)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35889292

RESUMEN

The plant-derived macrocyclic resin glycoside ipomoeassin F (Ipom-F) binds to Sec61α and significantly disrupts multiple aspects of Sec61-mediated protein biogenesis at the endoplasmic reticulum, ultimately leading to cell death. However, extensive assessment of Ipom-F as a molecular tool and a therapeutic lead is hampered by its limited production scale, largely caused by intramolecular assembly of the macrocyclic ring. Here, using in vitro and/or in cellula biological assays to explore the first series of ring-opened analogues for the ipomoeassins, and indeed all resin glycosides, we provide clear evidence that macrocyclic integrity is not required for the cytotoxic inhibition of Sec61-dependent protein translocation by Ipom-F. Furthermore, our modeling suggests that open-chain analogues of Ipom-F can interact with multiple sites on the Sec61α subunit, most likely located at a previously identified binding site for mycolactone and/or the so-called lateral gate. Subsequent in silico-aided design led to the discovery of the stereochemically simplified analogue 3 as a potent, alternative lead compound that could be synthesized much more efficiently than Ipom-F and will accelerate future ipomoeassin research in chemical biology and drug discovery. Our work may also inspire further exploration of ring-opened analogues of other resin glycosides.


Asunto(s)
Antineoplásicos , Glicoconjugados , Antineoplásicos/química , Glicoconjugados/química , Glicósidos/farmacología , Canales de Translocación SEC/metabolismo
3.
PLoS Pathog ; 18(1): e1010280, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100311

RESUMEN

Buruli ulcer (BU) is a neglected tropical disease caused by subcutaneous infection with Mycobacterium ulcerans and its exotoxin mycolactone. BU displays coagulative necrosis and widespread fibrin deposition in affected skin tissues. Despite this, the role of the vasculature in BU pathogenesis remains almost completely unexplored. We hypothesise that fibrin-driven ischemia can be an 'indirect' route to mycolactone-dependent tissue necrosis by a mechanism involving vascular dysfunction. Here, we tracked >900 vessels within contiguous tissue sections from eight BU patient biopsies. Our aim was to evaluate their vascular and coagulation biomarker phenotype and explore potential links to fibrin deposition. We also integrated this with our understanding of mycolactone's mechanism of action at Sec61 and its impact on proteins involved in maintaining normal vascular function. Our findings showed that endothelial cell dysfunction is common in skin tissue adjacent to necrotic regions. There was little evidence of primary haemostasis, perhaps due to mycolactone-dependent depletion of endothelial von Willebrand factor. Instead, fibrin staining appeared to be linked to the extrinsic pathway activator, tissue factor (TF). There was significantly greater than expected fibrin staining around vessels that had TF staining within the stroma, and this correlated with the distance it extended from the vessel basement membrane. TF-induced fibrin deposition in these locations would require plasma proteins outside of vessels, therefore we investigated whether mycolactone could increase vascular permeability in vitro. This was indeed the case, and leakage was further exacerbated by IL-1ß. Mycolactone caused the loss of endothelial adherens and tight junctions by the depletion of VE-cadherin, TIE-1, TIE-2 and JAM-C; all Sec61-dependent proteins. Taken together, our findings suggest that both vascular and lymphatic vessels in BU lesions become "leaky" during infection, due to the unique action of mycolactone, allowing TF-containing structures and plasma proteins into skin tissue, ultimately leading to local coagulopathy and tissue ischemia.


Asunto(s)
Úlcera de Buruli/metabolismo , Fibrina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Interleucina-1beta/metabolismo , Macrólidos/metabolismo , Mycobacterium ulcerans/metabolismo , Piel , Tromboplastina/metabolismo , Adolescente , Adulto , Anciano , Úlcera de Buruli/microbiología , Úlcera de Buruli/patología , Niño , Femenino , Células Endoteliales de la Vena Umbilical Humana/microbiología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Persona de Mediana Edad , Piel/irrigación sanguínea , Piel/metabolismo , Piel/microbiología
4.
Autophagy ; 18(4): 841-859, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34424124

RESUMEN

The Mycobacterium ulcerans exotoxin, mycolactone, is responsible for the immunosuppression and tissue necrosis that characterizes Buruli ulcer. Mycolactone inhibits SEC61-dependent co-translational translocation of proteins into the endoplasmic reticulum and the resultant cytosolic translation triggers degradation of mislocalized proteins by the ubiquitin-proteasome system. Inhibition of SEC61 by mycolactone also activates multiple EIF2S1/eIF2α kinases in the integrated stress response (ISR). Here we show mycolactone increased canonical markers of selective macroautophagy/autophagy LC3B-II, ubiquitin and SQSTM1/p62 in diverse disease-relevant primary cells and cell lines. Increased formation of puncta positive for the early autophagy markers WIPI2, RB1CC1/FIP200 and ATG16L1 indicates increased initiation of autophagy. The mycolactone response was SEC61A1-dependent and involved a pathway that required RB1CC1 but not ULK. Deletion of Sqstm1 reduced cell survival in the presence of mycolactone, suggesting this response protects against the increased cytosolic protein burden caused by the toxin. However, reconstitution of baseline SQSTM1 expression in cells lacking all autophagy receptor proteins could not rescue viability. Translational regulation by EIF2S1 in the ISR plays a key role in the autophagic response to mycolactone. Mycolactone-dependent induction of SQSTM1 was reduced in eif2ak3-/-/perk-/- cells while the p-EIF2S1 antagonist ISRIB reversed the upregulation of SQSTM1 and reduced RB1CC1, WIPI2 and LC3B puncta formation. Increased SQSTM1 staining could be seen in Buruli ulcer patient skin biopsy samples, reinforcing genetic data that suggests autophagy is relevant to disease pathology. Since selective autophagy and the ISR are both implicated in neurodegeneration, cancer and inflammation, the pathway uncovered here may have a broad relevance to human disease.Abbreviations: ATF4: activating transcription factor 4; ATG: autophagy related; BAF: bafilomycin A1; ATG16L1: autophagy related 16 like 1; BU: Buruli ulcer; CQ: chloroquine; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; CALCOCO2: calcium binding and coiled-coil domain 2; DMSO: dimethyl sulfoxide; EIF2S1: eukaryotic translation initiation factor 2 subunit alpha; ER: endoplasmic reticulum; GFP: green fluorescent protein; HDMEC: human dermal microvascular endothelial cells; HFFF: human fetal foreskin fibroblasts; ISR: integrated stress response; ISRIB: integrated stress response inhibitor; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; Myco: mycolactone; NBR1: NBR1 autophagy cargo receptor; NFE2L2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PFA: paraformaldehyde; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1: RB1-inducible coiled coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase; UPS: ubiquitin-proteasome system; WIPI: WD repeat domain, phosphoinositide interacting; WT: wild type.


Asunto(s)
Autofagia , Úlcera de Buruli , Factor 2 Eucariótico de Iniciación/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrólidos , Ratones , Factor 2 Procariótico de Iniciación/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Canales de Translocación SEC/metabolismo , Proteína Sequestosoma-1/metabolismo , Ubiquitina/metabolismo
5.
Biochem J ; 478(22): 4005-4024, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34726690

RESUMEN

The Mycobacterium ulcerans exotoxin, mycolactone, is an inhibitor of co-translational translocation via the Sec61 complex. Mycolactone has previously been shown to bind to, and alter the structure of the major translocon subunit Sec61α, and change its interaction with ribosome nascent chain complexes. In addition to its function in protein translocation into the ER, Sec61 also plays a key role in cellular Ca2+ homeostasis, acting as a leak channel between the endoplasmic reticulum (ER) and cytosol. Here, we have analysed the effect of mycolactone on cytosolic and ER Ca2+ levels using compartment-specific sensors. We also used molecular docking analysis to explore potential interaction sites for mycolactone on translocons in various states. These results show that mycolactone enhances the leak of Ca2+ ions via the Sec61 translocon, resulting in a slow but substantial depletion of ER Ca2+. This leak was dependent on mycolactone binding to Sec61α because resistance mutations in this protein completely ablated the increase. Molecular docking supports the existence of a mycolactone-binding transient inhibited state preceding translocation and suggests mycolactone may also bind Sec61α in its idle state. We propose that delayed ribosomal release after translation termination and/or translocon 'breathing' during rapid transitions between the idle and intermediate-inhibited states allow for transient Ca2+ leak, and mycolactone's stabilisation of the latter underpins the phenotype observed.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Macrólidos/farmacología , Canales de Translocación SEC/metabolismo , Animales , Células HCT116 , Células HEK293 , Humanos , Ratones , Células RAW 264.7
6.
J Virol ; 95(20): e0113421, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34346771

RESUMEN

Murine norovirus (MNV) infection results in a late translation shutoff that is proposed to contribute to the attenuated and delayed innate immune response observed both in vitro and in vivo. Recently, we further demonstrated the activation of the α subunit of eukaryotic initiation factor 2 (eIF2α) kinase GCN2 during MNV infection, which has been previously linked to immunomodulation and resistance to inflammatory signaling during metabolic stress. While viral infection is usually associated with activation of double-stranded RNA (dsRNA) binding pattern recognition receptor PKR, we hypothesized that the establishment of a metabolic stress in infected cells is a proviral event, exploited by MNV to promote replication through weakening the activation of the innate immune response. In this study, we used multi-omics approaches to characterize cellular responses during MNV replication. We demonstrate the activation of pathways related to the integrated stress response, a known driver of anti-inflammatory phenotypes in macrophages. In particular, MNV infection causes an amino acid imbalance that is associated with GCN2 and ATF2 signaling. Importantly, this reprogramming lacks the features of a typical innate immune response, with the ATF/CHOP target GDF15 contributing to the lack of antiviral responses. We propose that MNV-induced metabolic stress supports the establishment of host tolerance to viral replication and propagation. IMPORTANCE During viral infection, host defenses are typically characterized by the secretion of proinflammatory autocrine and paracrine cytokines, potentiation of the interferon (IFN) response, and induction of the antiviral response via activation of JAK and Stat signaling. To avoid these and propagate, viruses have evolved strategies to evade or counteract host sensing. In this study, we demonstrate that murine norovirus controls the antiviral response by activating a metabolic stress response that activates the amino acid response and impairs inflammatory signaling. This highlights novel tools in the viral countermeasures arsenal and demonstrates the importance of the currently poorly understood metabolic reprogramming occurring during viral infections.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Macrófagos/virología , Factor de Transcripción Activador 2/metabolismo , Animales , Antivirales , Infecciones por Caliciviridae/metabolismo , Línea Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Inmunidad Innata/inmunología , Inflamación/inmunología , Interferones , Macrófagos/inmunología , Ratones , Norovirus/patogenicidad , Proteínas Serina-Treonina Quinasas/metabolismo , Células RAW 264.7 , ARN Bicatenario/genética , Transducción de Señal/inmunología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
7.
Animals (Basel) ; 11(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207644

RESUMEN

Information on the practical use of cognitive enrichment in zoos is scarce. This survey aimed to identify where cognitive enrichment is being used while identifying factors that may limit its implementation and success. Distributed in eight languages to increase global range, responses to this survey (n = 177) show that while agreement on what constitutes cognitive enrichment is poor, it is universally perceived as very important for animal welfare. Carnivores were the animal group most reported to receive cognitive enrichment (76.3%), while amphibians and fish the least (16.9%). All animal groups had a percentage of participants indicating animal groups in their facility were not receiving cognitive enrichment when they believe that they should (29.4-44.6%). On average, factors relating to time and finance were rated most highly in terms of effect on cognitive enrichment use, and keeper interest was the highest rated for effect on success. Results of this study indicate that cognitive enrichment is perceived as important. However, placing the responsibility of its development and implementation on animal keepers who are already time-poor may be impeding its use. A commitment to incorporating cognitive enrichment into routine husbandry, including financial support and investment into staff is needed from zoos to ensure continued improvement to captive animal welfare.

8.
Nucleic Acids Res ; 49(6): 3242-3262, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33660774

RESUMEN

The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective variant surface glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one is expressed from one of ∼15 telomeric bloodstream form expression sites (BESs). Infectious metacyclic trypanosomes present within the tsetse fly vector also express VSG from a separate set of telomeric metacyclic ESs (MESs). All MESs are silenced in bloodstream form T. brucei. As very little is known about how this is mediated, we performed a whole genome RNAi library screen to identify MES repressors. This allowed us to identify a novel SAP domain containing DNA binding protein which we called TbSAP. TbSAP is enriched at the nuclear periphery and binds both MESs and BESs. Knockdown of TbSAP in bloodstream form trypanosomes did not result in cells becoming more 'metacyclic-like'. Instead, there was extensive global upregulation of transcripts including MES VSGs, VSGs within the silent VSG arrays as well as genes immediately downstream of BES promoters. TbSAP therefore appears to be a novel chromatin protein playing an important role in silencing the extensive VSG repertoire of bloodstream form T. brucei.


Asunto(s)
Proteínas Protozoarias/metabolismo , Proteínas Represoras/metabolismo , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas Protozoarias/genética , Interferencia de ARN , Proteínas Represoras/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
9.
Front Immunol ; 12: 788146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154073

RESUMEN

Buruli ulcer (BU), caused by Mycobacterium ulcerans, is a devastating necrotizing skin disease. Key to its pathogenesis is mycolactone, the exotoxin virulence factor that is both immunosuppressive and cytotoxic. The discovery that the essential Sec61 translocon is the major cellular target of mycolactone explains much of the disease pathology, including the immune blockade. Sec61 inhibition leads to a loss in production of nearly all cytokines from monocytes, macrophages, dendritic cells and T cells, as well as antigen presentation pathway proteins and costimulatory molecules. However, there has long been evidence that the immune system is not completely incapable of responding to M. ulcerans infection. In particular, IL-1ß was recently shown to be present in BU lesions, and to be induced from M. ulcerans-exposed macrophages in a mycolactone-dependent manner. This has important implications for our understanding of BU, showing that mycolactone can act as the "second signal" for IL-1ß production without inhibiting the pathways of unconventional secretion it uses for cellular release. In this Perspective article, we validate and discuss this recent advance, which is entirely in-line with our understanding of mycolactone's inhibition of the Sec61 translocon. However, we also show that the IL-1 receptor, which uses the conventional secretory pathway, is sensitive to mycolactone blockade at Sec61. Hence, a more complete understanding of the mechanisms regulating IL-1ß function in skin tissue, including the transient intra-macrophage stage of M. ulcerans infection, is urgently needed to uncover the double-edged sword of IL-1ß in BU pathogenesis, treatment and wound healing.


Asunto(s)
Úlcera de Buruli/inmunología , Interleucina-1beta/inmunología , Macrólidos/metabolismo , Macrófagos/inmunología , Canales de Translocación SEC/metabolismo , Humanos , Mycobacterium ulcerans/patogenicidad
10.
Mol Cell ; 79(3): 406-415.e7, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32692975

RESUMEN

Protein secretion in eukaryotes and prokaryotes involves a universally conserved protein translocation channel formed by the Sec61 complex. Unrelated small-molecule natural products and synthetic compounds inhibit Sec61 with differential effects for different substrates or for Sec61 from different organisms, making this a promising target for therapeutic intervention. To understand the mode of inhibition and provide insight into the molecular mechanism of this dynamic translocon, we determined the structure of mammalian Sec61 inhibited by the Mycobacterium ulcerans exotoxin mycolactone via electron cryo-microscopy. Unexpectedly, the conformation of inhibited Sec61 is optimal for substrate engagement, with mycolactone wedging open the cytosolic side of the lateral gate. The inability of mycolactone-inhibited Sec61 to effectively transport substrate proteins implies that signal peptides and transmembrane domains pass through the site occupied by mycolactone. This provides a foundation for understanding the molecular mechanism of Sec61 inhibitors and reveals novel features of translocon function and dynamics.


Asunto(s)
Macrólidos/farmacología , Microsomas/química , Ribosomas/química , Canales de Translocación SEC/química , Animales , Sitios de Unión , Sistema Libre de Células/metabolismo , Perros , Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Macrólidos/química , Macrólidos/aislamiento & purificación , Microsomas/metabolismo , Simulación de Dinámica Molecular , Mutación , Mycobacterium ulcerans/química , Mycobacterium ulcerans/patogenicidad , Páncreas/química , Páncreas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Ribosomas/metabolismo , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato
11.
PLoS Pathog ; 16(1): e1008250, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31905230

RESUMEN

Viral infections impose major stress on the host cell. In response, stress pathways can rapidly deploy defence mechanisms by shutting off the protein synthesis machinery and triggering the accumulation of mRNAs into stress granules to limit the use of energy and nutrients. Because this threatens viral gene expression, viruses need to evade these pathways to propagate. Human norovirus is responsible for gastroenteritis outbreaks worldwide. Here we examined how norovirus interacts with the eIF2α signaling axis controlling translation and stress granules. While norovirus infection represses host cell translation, our mechanistic analyses revealed that eIF2α signaling mediated by the stress kinase GCN2 is uncoupled from translational stalling. Moreover, infection results in a redistribution of the RNA-binding protein G3BP1 to replication complexes and remodelling of its interacting partners, allowing the avoidance from canonical stress granules. These results define novel strategies by which norovirus undergo efficient replication whilst avoiding the host stress response and manipulating the G3BP1 interactome.


Asunto(s)
Infecciones por Caliciviridae/virología , ADN Helicasas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Norovirus/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Biosíntesis de Proteínas , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Animales , Infecciones por Caliciviridae/genética , Línea Celular , Gránulos Citoplasmáticos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , ARN/metabolismo , Transducción de Señal , Replicación Viral
12.
Proc Natl Acad Sci U S A ; 116(33): 16561-16570, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31358644

RESUMEN

Monoallelic exclusion ensures that the African trypanosome Trypanosoma brucei exclusively expresses only 1 of thousands of different variant surface glycoprotein (VSG) coat genes. The active VSG is transcribed from 1 of 15 polycistronic bloodstream-form VSG expression sites (ESs), which are controlled in a mutually exclusive fashion. Unusually, T. brucei uses RNA polymerase I (Pol I) to transcribe the active ES, which is unprecedented among eukaryotes. This active ES is located within a unique extranucleolar Pol I body called the expression-site body (ESB). A stringent restriction mechanism prevents T. brucei from expressing multiple ESs at the same time, although how this is mediated is unclear. By using drug-selection pressure, we generated VSG double-expresser T. brucei lines, which have disrupted monoallelic exclusion, and simultaneously express 2 ESs in a dynamic fashion. The 2 unstably active ESs appear epigenetically similar to fully active ESs as determined by using chromatin immunoprecipitation for multiple epigenetic marks (histones H3 and H1, TDP1, and DNA base J). We find that the double-expresser cells, similar to wild-type single-expresser cells, predominantly contain 1 subnuclear ESB, as determined using Pol I or the ESB marker VEX1. Strikingly, simultaneous transcription of the 2 dynamically transcribed ESs is normally observed only when the 2 ESs are both located within this single ESB. This colocalization is reversible in the absence of drug selection. This discovery that simultaneously active ESs dynamically share a single ESB demonstrates the importance of this unique subnuclear body in restricting the monoallelic expression of VSG.


Asunto(s)
Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Línea Celular , Epigénesis Genética , Transporte de Proteínas , Transcripción Genética , Trypanosoma brucei brucei/genética
13.
J Am Chem Soc ; 141(21): 8450-8461, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31059257

RESUMEN

Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61α (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61α from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61α forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61α provides compelling evidence that Sec61α is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61α is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61α function and to further investigate its potential as a therapeutic target for drug discovery.


Asunto(s)
Glicoconjugados/farmacología , Canales de Translocación SEC/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Glicoconjugados/química , Humanos , Estructura Molecular , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC/metabolismo
14.
Cell Death Dis ; 9(3): 397, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540678

RESUMEN

Mycolactone is the exotoxin virulence factor of Mycobacterium ulcerans that causes the neglected tropical disease Buruli ulcer. We recently showed it to be a broad spectrum inhibitor of Sec61-dependent co-translational translocation of proteins into the endoplasmic reticulum (ER). An outstanding question is the molecular pathway linking this to its known cytotoxicity. We have now used translational profiling to better understand the reprogramming that occurs in cells exposed to mycolactone. Gene ontology identified enrichment in genes involved in cellular response to stress, and apoptosis signalling among those showing enhanced translation. Validation of these results supports a mechanism by which mycolactone activates an integrated stress response meditated by phosphorylation of eIF2α via multiple kinases (PERK, GCN, PKR) without activation of the ER stress sensors IRE1 or ATF6. The response therefore uncouples the integrated stress response from ER stress, and features translational and transcriptional modes of genes expression that feature the key regulatory transcription factor ATF4. Emphasising the importance of this uncoupled response in cytotoxicity, downstream activation of this pathway is abolished in cells expressing mycolactone-resistant Sec61α variants. Using multiple genetic and biochemical approaches, we demonstrate that eIF2α phosphorylation is responsible for mycolactone-dependent translation attenuation, which initially protects cells from cell death. However, chronic activation without stress remediation enhances autophagy and apoptosis of cells by a pathway facilitated by ATF4 and CHOP. Our findings demonstrate that priming events at the ER can result in the sensing of stress within different cellular compartments.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Toxinas Bacterianas/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Macrólidos/toxicidad , Canales de Translocación SEC/metabolismo , Factor de Transcripción Activador 4/genética , Animales , Línea Celular , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Humanos , Ratones , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC/genética
15.
PeerJ ; 6: e4454, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29568703

RESUMEN

The personality trait of curiosity has been shown to increase welfare in humans. If this positive welfare effect is also true for non-humans, animals with high levels of curiosity may be able to cope better with stressful situations than their conspecifics. Before discoveries can be made regarding the effect of curiosity on an animal's ability to cope in their environment, a way of measuring curiosity across species in different environments must be created to standardise testing. To determine the suitability of novel objects in testing curiosity, species from different evolutionary backgrounds with sufficient sample sizes were chosen. Barbary sheep (Ammotragus lervia) n = 12, little penguins (Eudyptula minor) n = 10, ringtail lemurs (Lemur catta) n = 8, red tailed black cockatoos (Calyptorhynchus banksia) n = 7, Indian star tortoises (Geochelone elegans) n = 5 and red kangaroos (Macropus rufus) n = 5 were presented with a stationary object, a moving object and a mirror. Having objects with different characteristics increased the likelihood individuals would find at least one motivating. Conspecifics were all assessed simultaneously for time to first orientate towards object (s), latency to make contact (s), frequency of interactions, and total duration of interaction (s). Differences in curiosity were recorded in four of the six species; the Barbary sheep and red tailed black cockatoos did not interact with the novel objects suggesting either a low level of curiosity or that the objects were not motivating for these animals. Variation in curiosity was seen between and within species in terms of which objects they interacted with and how long they spent with the objects. This was determined by the speed in which they interacted, and the duration of interest. By using the measure of curiosity towards novel objects with varying characteristics across a range of zoo species, we can see evidence of evolutionary, husbandry and individual influences on their response. Further work to obtain data on multiple captive populations of a single species using a standardised method could uncover factors that nurture the development of curiosity. In doing so, it would be possible to isolate and modify sub-optimal husbandry practices to improve welfare in the zoo environment.

16.
Mol Microbiol ; 106(4): 614-634, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28906055

RESUMEN

Trypanosoma brucei faces relentless immune attack in the mammalian bloodstream, where it is protected by an essential coat of Variant Surface Glycoprotein (VSG) comprising ∼10% total protein. The active VSG gene is in a Pol I-transcribed telomeric expression site (ES). We investigated factors mediating these extremely high levels of VSG expression by inserting ectopic VSG117 into VSG221 expressing T. brucei. Mutational analysis of the ectopic VSG 3'UTR demonstrated the essentiality of a conserved 16-mer for mRNA stability. Expressing ectopic VSG117 from different genomic locations showed that functional VSG levels could be produced from a gene 60 kb upstream of its normal telomeric location. High, but very heterogeneous levels of VSG117 were obtained from the Pol I-transcribed rDNA. Blocking VSG synthesis normally triggers a precise precytokinesis cell-cycle checkpoint. VSG117 expression from the rDNA was not adequate for functional complementation, and the stalled cells arrested prior to cytokinesis. However, VSG levels were not consistently low enough to trigger a characteristic 'VSG synthesis block' cell-cycle checkpoint, as some cells reinitiated S phase. This demonstrates the essentiality of a Pol I-transcribed ES, as well as conserved VSG 3'UTR 16-mer sequences for the generation of functional levels of VSG expression in bloodstream form T. brucei.


Asunto(s)
Regiones no Traducidas 3'/genética , Glicoproteínas de Membrana/genética , Trypanosoma brucei brucei/genética , Regiones no Traducidas 3'/fisiología , ADN Ribosómico , Regulación de la Expresión Génica/genética , Genómica , Queratinas , Glicoproteínas de Membrana/metabolismo , Biosíntesis de Proteínas , ARN Polimerasa I/metabolismo , Telómero , Transcripción Genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
17.
PLoS Pathog ; 11(7): e1005011, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26181660

RESUMEN

A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2 ng/ml and as early as 8 hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tissue ischemia could contribute to the development of the tissue necrosis seen in BU lesions.


Asunto(s)
Antibacterianos/uso terapéutico , Úlcera de Buruli/tratamiento farmacológico , Fibrina/metabolismo , Macrólidos/uso terapéutico , Mycobacterium ulcerans/fisiología , Trombomodulina/metabolismo , Úlcera de Buruli/diagnóstico , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiología , Células Endoteliales/metabolismo , Humanos , Macrólidos/metabolismo , Necrosis/microbiología , Piel/microbiología , Piel/patología
18.
Mem. Inst. Oswaldo Cruz ; 109(3): 315-323, 06/2014. tab, graf
Artículo en Inglés | LILACS | ID: lil-711722

RESUMEN

Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR) enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazole in 8), the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.


Asunto(s)
Animales , Humanos , Masculino , Ratones , Nitrorreductasas/efectos de los fármacos , Tiadiazoles , Triazoles , Tripanocidas , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Nitrorreductasas/metabolismo , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tiadiazoles/química , Tiadiazoles/metabolismo , Tiadiazoles/farmacología , Tiadiazoles/toxicidad , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología , Triazoles/toxicidad , Tripanocidas/química , Tripanocidas/farmacología , Tripanocidas/toxicidad , Trypanosoma cruzi/efectos de los fármacos
19.
PLoS Pathog ; 10(4): e1004061, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699819

RESUMEN

Infection with Mycobacterium ulcerans is characterised by tissue necrosis and immunosuppression due to mycolactone, the necessary and sufficient virulence factor for Buruli ulcer disease pathology. Many of its effects are known to involve down-regulation of specific proteins implicated in important cellular processes, such as immune responses and cell adhesion. We have previously shown mycolactone completely blocks the production of LPS-dependent proinflammatory mediators post-transcriptionally. Using polysome profiling we now demonstrate conclusively that mycolactone does not prevent translation of TNF, IL-6 and Cox-2 mRNAs in macrophages. Instead, it inhibits the production of these, along with nearly all other (induced and constitutive) proteins that transit through the ER. This is due to a blockade of protein translocation and subsequent degradation of aberrantly located protein. Several lines of evidence support this transformative explanation of mycolactone function. First, cellular TNF and Cox-2 can be once more detected if the action of the 26S proteasome is inhibited concurrently. Second, restored protein is found in the cytosol, indicating an inability to translocate. Third, in vitro translation assays show mycolactone prevents the translocation of TNF and other proteins into the ER. This is specific as the insertion of tail-anchored proteins into the ER is unaffected showing that the ER remains structurally intact. Fourth, metabolic labelling reveals a near-complete loss of glycosylated and secreted proteins from treated cells, whereas cytosolic proteins are unaffected. Notably, the profound lack of glycosylated and secreted protein production is apparent in a range of different disease-relevant cell types. These studies provide a new mechanism underlying mycolactone's observed pathological activities both in vitro and in vivo. Mycolactone-dependent inhibition of protein translocation into the ER not only explains the deficit of innate cytokines, but also the loss of membrane receptors, adhesion molecules and T-cell cytokines that drive the aetiology of Buruli ulcer.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mediadores de Inflamación/metabolismo , Macrólidos/metabolismo , Mycobacterium ulcerans/patogenicidad , Animales , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiología , Úlcera de Buruli/patología , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Ciclooxigenasa 2/metabolismo , Retículo Endoplásmico/patología , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Mycobacterium ulcerans/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
20.
Mem Inst Oswaldo Cruz ; 109(3): 315-23, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24676659

RESUMEN

Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR) enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazole in 8), the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.


Asunto(s)
Nitrorreductasas/efectos de los fármacos , Tiadiazoles , Triazoles , Tripanocidas , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Animales , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Masculino , Ratones , Nitrorreductasas/metabolismo , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Tiadiazoles/química , Tiadiazoles/metabolismo , Tiadiazoles/farmacología , Tiadiazoles/toxicidad , Triazoles/química , Triazoles/metabolismo , Triazoles/farmacología , Triazoles/toxicidad , Tripanocidas/química , Tripanocidas/farmacología , Tripanocidas/toxicidad , Trypanosoma cruzi/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...