Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38573185

RESUMEN

BACKGROUND: Culture-free real-time sequencing of clinical metagenomic samples promises both rapid pathogen detection and antimicrobial resistance profiling. However, this approach introduces the risk of patient DNA leakage. To mitigate this risk, we need near-comprehensive removal of human DNA sequences at the point of sequencing, typically involving the use of resource-constrained devices. Existing benchmarks have largely focused on the use of standardized databases and largely ignored the computational requirements of depletion pipelines as well as the impact of human genome diversity. RESULTS: We benchmarked host removal pipelines on simulated and artificial real Illumina and Nanopore metagenomic samples. We found that construction of a custom kraken database containing diverse human genomes results in the best balance of accuracy and computational resource usage. In addition, we benchmarked pipelines using kraken and minimap2 for taxonomic classification of Mycobacterium reads using standard and custom databases. With a database representative of the Mycobacterium genus, both tools obtained improved specificity and sensitivity, compared to the standard databases for classification of Mycobacterium tuberculosis. Computational efficiency of these custom databases was superior to most standard approaches, allowing them to be executed on a laptop device. CONCLUSIONS: Customized pangenome databases provide the best balance of accuracy and computational efficiency when compared to standard databases for the task of human read removal and M. tuberculosis read classification from metagenomic samples. Such databases allow for execution on a laptop, without sacrificing accuracy, an especially important consideration in low-resource settings. We make all customized databases and pipelines freely available.


Asunto(s)
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Benchmarking , Bases de Datos Factuales , Genoma Humano , Metagenoma
2.
Dalton Trans ; 53(17): 7414-7423, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38591102

RESUMEN

Bimetallic transition metal complexes with site-specific redox properties offer a versatile platform for understanding electron polarization, intramolecular electron transfer processes, and customizing electronic and magnetic properties that might impact reactivity and catalyst design. Inspired by the dissymmetric nickel sites in the Acetyl CoA Synthase (ACS) Active Site, three new bimetallic Ni(N2S2)-Ni(S2C2R2) complexes based on Ni(N2S2) metalloligand donor synthons, Nid, in mimicry of the nickel site distal to the redox-active iron sulfur cluster of ACS, and nickel dithiolene receiver units, designated as Nip, the nickel proximal to the 4Fe4S cluster, were combined to explore the influence of ligand environment on electronic structure and redox properties of each unit. The combination of synthons gave a matrix of three S-bridged dinickel complexes, characterized by X-ray crystallography, and appropriate spectroscopies. Computational modeling is connected to the electronic characteristics of the nickel donor and receiver units. This study demonstrated the intricacies of identifying sites of electrochemical redox processes, within multi-metallic systems containing non-innocent ligands.

3.
Diagn Microbiol Infect Dis ; 109(2): 116249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537504

RESUMEN

Targeted Next Generation Sequencing (tNGS) and Whole Genome Sequencing (WGS) are increasingly used for genotypic drug susceptibility testing (gDST) of Mycobacterium tuberculosis. Thirty-two multi-drugs resistant and 40 drug susceptible isolates from Madagascar were tested with Deeplex® Myc-TB and WGS using the Mykrobe analysis pipeline. Sixty-four of 72 (89 %) yielded concordant categorical gDST results for drugs tested by both assays. Mykrobe didn't detect pncA K96T, pncA Q141P, pncA H51P, pncA H82R, rrs C517T and rpsL K43R mutations, which were identified as minority variants in corresponding isolates by tNGS. One discrepancy (rrs C517T) was associated with insufficient sequencing depth on WGS. Deeplex® Myc-TB didn't detect inhA G-154A which isn't covered by the assay's amplification targets. Despite those targets being included in the Deeplex® Myc-TB assay, a pncA T47A and a deletion in gid were not identified in one isolate respectively. The evaluated WGS and tNGS gDST assays show high but imperfect concordance.


Asunto(s)
Antituberculosos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Secuenciación Completa del Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Madagascar , Genoma Bacteriano/genética , Mutación , Proteínas Bacterianas/genética , Técnicas de Genotipaje/métodos
4.
Inorg Chem ; 63(4): 1898-1908, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38237561

RESUMEN

Strong linear relationships between their Ceq-Os-Os-Ceq dihedral angles and their Os-Os bond distances in diosmium sawhorse complexes Os2(u-O2CR)2(CO)4L2 (L = CO and/or PR3) form two trendlines depending upon the presence or absence of terminal phosphines. These trends appear unrelated to the basicity of the bridging ligand or the number of phosphines. The mathematical derivation of the relationship between the O-Os-Os-O dihedral angle and the Os-Os bond distance shows how the other geometric parameters affect this relationship. Optimized density functional theory (DFT) structures reveal a similar strong linear correlation, where more electron-donating ligands render shorter Os-Os bond distances and larger dihedral angles, but these results form a single trendline. Computational scans of individual parameters show that the Os-Os bond responds strongly to changes in the dihedral angles, but the dihedral angles only respond weakly to changes in the Os-Os bond distance because the Os-Os-O bond angle links and modifies their direct coupling. Solid-state analysis of their structures, including DFT geometry optimizations, shows that phosphines protect the Os-Os bond distance from packing influences along the Os-Os axis, while in complexes without phosphines, packing compresses the Os-Os bond and the weak dihedral responses create the second trendline.

5.
ACS Org Inorg Au ; 3(6): 393-402, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38075453

RESUMEN

Heterotrimetallic complexes with (N2S2)M metallodithiolates, M = Ni2+, [Fe(NO)]2+, and [Co(NO)]2+, as bidentate chelating ligands to a central trans-Cr(NO)(MeCN) unit were characterized as the first members of a new class, NiCrNi, FeCrFe, CoCrCo. The complexes exhibit a cisoid structural topology, ascribed to the stereoactivity of the available lone pair(s) on the sulfur donors, resulting in a dispersed, electropositive pocket from the N/N and N/S hydrocarbon linkers wherein the Cr-NO site is housed. Computational studies explored alternative isomers (transoid and inverted cisoid) that suggest a combination of electronic and steric effects govern the geometrical selectivity. Electrostatic potential maps readily display the dominant electronegative potential from the sulfurs which force the NO to the electropositive pocket. The available S lone pairs work in synergy with the π-withdrawing ability of NO to lift Cr out of the S4 plane toward the NO and stabilize the geometry. The metallodithiolate ligands bound to Cr(NO) thus find structural consistency across the three congeners. Although the dinitrosyl [(bme-dach)Co(NO)-Mo(NO)(MeCN)-(bme-dach)Co(MeCN)][PF6]2 (CoMoCo') analogue displays chemical noninnocence and a partial Mo-Co bond toward (N2S2)Co'(NCCH3) in an "asymmetric butterfly" topology [Guerrero-Almaraz P.Inorg. Chem.2021, 60(21 (21), ), 15975-15979], the stability of the {Cr(NO)}5 unit prohibits such bond rearrangement. Magnetism and EPR studies illustrate spin coupling across the sulfur thiolate sulfur bridges.

7.
Chem Sci ; 14(34): 9167-9174, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37655023

RESUMEN

Reaction of the nitrosylated-iron metallodithiolate ligand, paramagnetic (NO)Fe(N2S2), with [M(CH3CN)n][BF4]2 salts (M = NiII, PdII, and PtII; n = 4 or 6) affords di-radical tri-metallic complexes in a stairstep type arrangement ([FeMFe]2+, M = Ni, Pd, and Pt), with the central group 10 metal held in a MS4 square plane. These isostructural compounds have nearly identical ν(NO) stretching values, isomer shifts, and electrochemical properties, but vary in their magnetic properties. Despite the intramolecular Fe⋯Fe distances of ca. 6 Å, antiferromagnetic coupling is observed between {Fe(NO)}7 units as established by magnetic susceptibility, EPR, and DFT studies. The superexchange interaction through the thiolate sulfur and central metal atoms is on the order of NiII < PdII ≪ PtII with exchange coupling constants (J) of -3, -23, and -124 cm-1, consistent with increased covalency of the M-S bonds (3d < 4d < 5d). This trend is reproduced by DFT calculations with molecular orbital analysis providing insight into the origin of the enhancement in the exchange interaction. Specifically, the magnitude of the exchange interaction correlates surprisingly well with the energy difference between the HOMO and HOMO-1 orbitals of the triplet states, which is reflected in the central metal's contribution to these orbitals. These results demonstrate the ability of sulfur-dense metallodithiolate ligands to engender strong magnetic communication by virtue of their enhanced covalency and polarizability.

8.
Microb Genom ; 9(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552534

RESUMEN

Tuberculosis is a global pandemic disease with a rising burden of antimicrobial resistance. As a result, the World Health Organization (WHO) has a goal of enabling universal access to drug susceptibility testing (DST). Given the slowness of and infrastructure requirements for phenotypic DST, whole-genome sequencing, followed by genotype-based prediction of DST, now provides a route to achieving this. Since a central component of genotypic DST is to detect the presence of any known resistance-causing mutations, a natural approach is to use a reference graph that allows encoding of known variation. We have developed DrPRG (Drug resistance Prediction with Reference Graphs) using the bacterial reference graph method Pandora. First, we outline the construction of a Mycobacterium tuberculosis drug resistance reference graph. The graph is built from a global dataset of isolates with varying drug susceptibility profiles, thus capturing common and rare resistance- and susceptible-associated haplotypes. We benchmark DrPRG against the existing graph-based tool Mykrobe and the haplotype-based approach of TBProfiler using 44 709 and 138 publicly available Illumina and Nanopore samples with associated phenotypes. We find that DrPRG has significantly improved sensitivity and specificity for some drugs compared to these tools, with no significant decreases. It uses significantly less computational memory than both tools, and provides significantly faster runtimes, except when runtime is compared to Mykrobe with Nanopore data. We discover and discuss novel insights into resistance-conferring variation for M. tuberculosis - including deletion of genes katG and pncA - and suggest mutations that may warrant reclassification as associated with resistance.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/genética , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis/microbiología
9.
Chemistry ; 29(49): e202301863, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439447

RESUMEN

Reactions of the IrV hydride [Me BDIDipp ]IrH4 {BDI=(Dipp)NC(Me)CH(Me)CN(Dipp); Dipp=2,6-iPr2 C6 H3 } with E[N(SiMe3 )2 ]2 (E=Sn, Pb) afforded the unusual dimeric dimetallotetrylenes ([Me BDIDipp ]IrH)2 (µ2 -E)2 in good yields. Moreover, ([Me BDIDipp ]IrH)2 (µ2 -Ge)2 was formed in situ from thermal decomposition of [Me BDIDipp ]Ir(H)2 Ge[N(SiMe3 )2 ]2 . These reactions are accompanied by liberation of HN(SiMe3 )2 and H2 through the apparent cleavage of an E-N(SiMe3 )2 bond by Ir-H. In a reversal of this process, ([Me BDIDipp ]IrH)2 (µ2 -E)2 reacted with excess H2 to regenerate [Me BDIDipp ]IrH4 . Varying the concentrations of reactants led to formation of the trimeric ([Me BDIDipp ]IrH2 )3 (µ2 -E)3 . The further scope of this synthetic route was investigated with group 15 amides, and ([Me BDIDipp ]IrH)2 (µ2 -Bi)2 was prepared by the reaction of [Me BDIDipp ]IrH4 with Bi(NMe2 )3 or Bi(OtBu)3 to afford the first example of a "naked" two-coordinate Bi atom bound exclusively to transition metals. A viable mechanism that accounts for the formation of these products is proposed. Computational investigations of the Ir2 E2 (E=Sn, Pb) compounds characterized them as open-shell singlets with confined nonbonding lone pairs at the E centers. In contrast, Ir2 Bi2 is characterized as having a closed-shell singlet ground state.

10.
Facial Plast Surg ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37253385

RESUMEN

This study aimed to prospectively evaluate the effectiveness, patient satisfaction, and early adverse events of using the hyaluronic acid filler VYC-20L for the treatment of infraorbital hollowing. A total of 21 participants underwent injection of VYC-20L. FACE-Q satisfaction surveys before and after treatment along with early adverse events surveys were conducted. Pre- and posttreatment photos were graded, and the Allergan Infraorbital Hollows Scale was used to assess the difference in infraorbital hollowing. The results showed infraorbital hollowing improvement with VYC-20L was significant (p < 0.001). FACE-Q Satisfaction with Eyes scores on average were 27 points higher after treatment (p < 0.001). The mean FACE-Q Satisfaction with Decision score was 74.1%. The most common short-term adverse symptoms were tenderness (67%), swelling (62%), and bruising (52%). This study concludes that VYC-20L is an effective nonsurgical treatment option for infraorbital hollowing with high patient satisfaction.

11.
Inorg Chem ; 62(13): 5058-5066, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36946599

RESUMEN

We present results for a series of complexes derived from a titanium complex capable of activating C-H bonds under mild conditions (PNP)Ti═CHtBu(CH2tBu), where PNP = N[2-PiPr2-4-methylphenyl]2-. In addition to the initial activation of methane, a tautomerization reaction to a terminal methylidene is also explored due to methylidene's potential use as a synthetic starting point. Analogous complexes with other low-cost 3d transition metals were studied, such as scandium, titanium, vanadium, and chromium as both isoelectronic and isocharged complexes. Our results predict that V(IV) and V(V) complexes are promising for methane C-H bond activation. The V(V) complex has a low rate-determining barrier for methane activation, specifically 16.6 kcal/mol, which is approximately 12 kcal/mol less than that for the Ti complex, as well as having a moderate tautomerization barrier of 29.8 kcal/mol, while the V(IV) complex has a methane activation barrier of 19.0 kcal/mol and a tautomerization barrier of 31.1 kcal/mol. Scandium and chromium complexes are much poorer for C-H bond activation; scandium has very high barriers, while chromium strongly overstabilizes the alkylidene intermediate, potentially stopping the further reaction. In addition to the original PNP ligand, some of the most promising ligands from a previous work were tested, although (as shown previously) modification of the ligand does not typically have large effects on the activity of the system. Our best ligand modification improves the performance of the V(V) complex via the substitution of the nitrogen in PNP by phosphorus, which reduces the tautomerization barrier by 5 to 24.4 kcal/mol.

12.
J Clin Microbiol ; 61(3): e0157822, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36815861

RESUMEN

Universal access to drug susceptibility testing for newly diagnosed tuberculosis patients is recommended. Access to culture-based diagnostics remains limited, and targeted molecular assays are vulnerable to emerging resistance mutations. Improved protocols for direct-from-sputum Mycobacterium tuberculosis sequencing would accelerate access to comprehensive drug susceptibility testing and molecular typing. We assessed a thermo-protection buffer-based direct-from-sample M. tuberculosis whole-genome sequencing protocol. We prospectively analyzed 60 acid-fast bacilli smear-positive clinical sputum samples in India and Madagascar. A diversity of semiquantitative smear positivity-level samples were included. Sequencing was performed using Illumina and MinION (monoplex and multiplex) technologies. We measured the impact of bacterial inoculum and sequencing platforms on genomic read depth, drug susceptibility prediction performance, and typing accuracy. M. tuberculosis was identified by direct sputum sequencing in 45/51 samples using Illumina, 34/38 were identified using MinION-monoplex sequencing, and 20/24 were identified using MinION-multiplex sequencing. The fraction of M. tuberculosis reads from MinION sequencing was lower than from Illumina, but monoplexing grade 3+ samples on MinION produced higher read depth than Illumina (P < 0.05) and MinION multiplexing (P < 0.01). No significant differences in sensitivity and specificity of drug susceptibility predictions were seen across sequencing modalities or within each technology when stratified by smear grade. Illumina sequencing from sputum accurately identified 1/8 (rifampin) and 6/12 (isoniazid) resistant samples, compared to 2/3 (rifampin) and 3/6 (isoniazid) accurately identified with Nanopore monoplex. Lineage agreement levels between direct and culture-based sequencing were 85% (MinION-monoplex), 88% (Illumina), and 100% (MinION-multiplex). M. tuberculosis direct-from-sample whole-genome sequencing remains challenging. Improved and affordable sample treatment protocols are needed prior to clinical deployment.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida , Rifampin , Pruebas de Sensibilidad Microbiana , Esputo/microbiología , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Genómica , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
13.
Lancet Microbe ; 4(2): e84-e92, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36549315

RESUMEN

BACKGROUND: Mycobacterium tuberculosis whole-genome sequencing (WGS) has been widely used for genotypic drug susceptibility testing (DST) and outbreak investigation. For both applications, Illumina technology is used by most public health laboratories; however, Nanopore technology developed by Oxford Nanopore Technologies has not been thoroughly evaluated. The aim of this study was to determine whether Nanopore sequencing data can provide equivalent information to Illumina for transmission clustering and genotypic DST for M tuberculosis. METHODS: In this genomic analysis, we analysed 151 M tuberculosis isolates from Madagascar, South Africa, and England, which were collected between 2011 and 2018, using phenotypic DST and matched Illumina and Nanopore data. Illumina sequencing was done with the MiSeq, HiSeq 2500, or NextSeq500 platforms and Nanopore sequencing was done on the MinION or GridION platforms. Using highly reliable PacBio sequencing assemblies and pairwise distance correlation between Nanopore and Illumina data, we optimise Nanopore variant filters for detecting single-nucleotide polymorphisms (SNPs; using BCFtools software). We then used those SNPs to compare transmission clusters identified by Nanopore with the currently used UK Health Security Agency Illumina pipeline (COMPASS). We compared Illumina and Nanopore WGS-based DST predictions using the Mykrobe software and mutation catalogue. FINDINGS: The Nanopore BCFtools pipeline identified SNPs with a median precision of 99·3% (IQR 99·1-99·6) and recall of 90·2% (88·1-94·2) compared with a precision of 99·6% (99·4-99·7) and recall of 91·9% (87·6-98·6) using the Illumina COMPASS pipeline. Using a threshold of 12 SNPs for putative transmission clusters, Illumina identified 98 isolates as unrelated and 53 as belonging to 19 distinct clusters (size range 2-7). Nanopore reproduced 15 out of 19 clusters perfectly; two clusters were merged into one cluster, one cluster had a single sample missing, and one cluster had an additional sample adjoined. Illumina-based clusters were also closely replicated using a five SNP threshold and clustering accuracy was maintained using mixed Illumina and Nanopore datasets. Genotyping resistance variants with Nanopore was highly concordant with Illumina, having zero discordant SNPs across more than 3000 SNPs and four insertions or deletions (indels), across 60 000 indels. INTERPRETATION: Illumina and Nanopore technologies can be used independently or together by public health laboratories performing M tuberculosis genotypic DST and outbreak investigations. As a result, clinical and public health institutions making decisions on which sequencing technology to adopt for tuberculosis can base the choice on cost (which varies by country), batching, and turnaround time. FUNDING: Academy for Medical Sciences, Oxford Wellcome Institutional Strategic Support Fund, and the Swiss South Africa Joint Research Award (Swiss National Science Foundation and South African National Research Foundation).


Asunto(s)
Mycobacterium tuberculosis , Secuenciación de Nanoporos , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia de ADN , Genómica , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Brotes de Enfermedades
14.
IUCrJ ; 9(Pt 5): 639-647, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36071797

RESUMEN

All water-water contacts in the crystal structures from the Cambridge Structural Database with d OO ≤ 4.0 Šhave been found. These contacts were analysed on the basis of their geometries and interaction energies from CCSD(T)/CBS calculations. The results show 6729 attractive water-water contacts, of which 4717 are classical hydrogen bonds (d OH ≤ 3.0 Šand α ≥ 120°) with most being stronger than -3.3 kcal mol-1. Beyond the region of these hydrogen bonds, there is a large number of attractive interactions (2062). The majority are antiparallel dipolar interactions, where the O-H bonds of two water molecules lying in parallel planes are oriented antiparallel to each other. Developing geometric criteria for these antiparallel dipoles (ß1, ß2 ≥ 160°, 80 ≤ α ≤ 140° and T HOHO > 40°) yielded 1282 attractive contacts. The interaction energies of these antiparallel oriented water molecules are up to -4.7 kcal mol-1, while most of the contacts have interaction energies in the range -0.9 to -2.1 kcal mol-1. This study suggests that the geometric criteria for defining attractive water-water interactions should be broader than the classical hydrogen-bonding criteria, a change that may reveal undiscovered and unappreciated interactions controlling molecular structure and chemistry.

15.
J Am Chem Soc ; 144(40): 18672-18687, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36174130

RESUMEN

Methylidene complexes often couple to ethylene complexes, but the mechanistic insight is scant. The path by which two cations [(η5-C5H5)Re(NO)(PPh3)(═CH2)]+ (5+) transform (CH2Cl2/acetonitrile) to [(η5-C5H5)Re(NO)(PPh3)(H2C═CH2)]+ (6+) and [(η5-C5H5)Re(NO)(PPh3)(NCCH3)]+ is studied by density functional theory. Experiments provide a number of constraints such as the second-order rate in 5+; no prior ligand dissociation/exchange; a faster reaction of (S)-5+ with (S)-5+ than with (R)-5+ ("enantiomer self-recognition"). Although dirhenium dications with Re(µ-CH2)2Re cores represent energy minima, they are not accessible by 2 + 2 cycloadditions of 5+. Transition states leading to ReCH2CH2Re linkages are prohibitively high in energy. However, 5+ can give non-covalent SRe/SRe or SRe/RRe dimers with π interactions between the PPh3 ligands but long ReCH2···H2CRe and H2CRe···H2CRe distances (3.073-3.095 Å and 3.878-4.529 Å, respectively). In rate-determining steps, these afford [(η5-C5H5)Re(NO)(PPh3)(µ-η2:η2-H2C···CH2)(Ph3P)(ON)Re(η5-C5H5)]2+ (132+), in which one rhenium binds the bridging ethylene more tightly than the other (2.115-2.098 vs 2.431-2.486 Å to the centroid). In the SRe/RRe adduct, Dewar-Chatt-Duncanson optimization leads to unfavorable PPh3/PPh3 contacts. Ligand interactions are further dissected in the preceding transition states via component analyses, and ΔΔG‡ (1.2 kcal/mol, CH2Cl2) favors the SRe/SRe pathway, in accordance with the experiment. Acetonitrile then displaces 6+ from the more weakly bound rhenium of 132+. The formation of similar µ-H2C···CH2 intermediates is found to be rate-determining for varied coordinatively saturated M═CH2 species [M = Fe(d6)/Re(d4)/Ta(d2)], establishing generality and enhancing relevancy to catalytic CH4 and CO/H2 chemistry.


Asunto(s)
Renio , Acetonitrilos , Catálisis , Etilenos , Ligandos , Renio/química
16.
Genome Biol ; 23(1): 147, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35791022

RESUMEN

There are many short-read variant-calling tools, with different strengths and weaknesses. We present a tool, Minos, which combines outputs from arbitrary variant callers, increasing recall without loss of precision. We benchmark on 62 samples from three bacterial species and an outbreak of 385 Mycobacterium tuberculosis samples. Minos also enables joint genotyping; we demonstrate on a large (N=13k) M. tuberculosis cohort, building a map of non-synonymous SNPs and indels in a region where all such variants are assumed to cause rifampicin resistance. We quantify the correlation with phenotypic resistance and then replicate in a second cohort (N=10k).


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mycobacterium tuberculosis , Genoma Bacteriano , Genotipo , Humanos , Mutación INDEL , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleótido Simple
17.
Inorg Chem ; 61(31): 12087-12096, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35876142

RESUMEN

Ketones have been proven effective in extracting astatine(III) from aqueous solvents. Previous theoretical studies suggested a mechanism where the "sp2" lone pair on the carbonyl oxygen donates electron density into the π system of the AtO+ molecular cation to form a dative-type bond. In this study, co-extraction of NO3- as AtO(NO3)·(O═CR1R2) species into the organic phase appears to be a key factor. Adjusting the electronic properties of the ketone, by having an aryl group instead of an alkyl group in the alpha position of the ketone, increased the electron density on C═O, increased the bond strength between the ketone and AtO+, and in turn increased the extraction of 211At into the organic phase. Extraction with diketones shows dependence on the bridging distance between the two carbonyl moieties, where a C3 or longer bridge results in a 10-fold increase in extraction into the organic phase. DFT calculations show the longer bridge allows for the chelation of AtO(NO3) by either the second carbonyl or the phenyl ring.


Asunto(s)
Astato , Cetonas , Cationes , Solventes , Agua
18.
Proc Natl Acad Sci U S A ; 119(25): e2201240119, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696567

RESUMEN

The synthesis of sulfur-bridged Fe-Ni heterobimetallics was inspired by Nature's strategies to "trick" abundant first row transition metals into enabling 2-electron processes: redox-active ligands (including pendant iron-sulfur clusters) and proximal metals. Our design to have redox-active ligands on each metal, NO on iron and dithiolene on nickel, resulted in the observation of unexpectedly intricate physical properties. The metallodithiolate, (NO)Fe(N2S2), reacts with a labile ligand derivative of [NiII(S2C2Ph2)]0, NiDT, yielding the expected S-bridged neutral adduct, FeNi, containing a doublet {Fe(NO)}7. Good reversibility of two redox events of FeNi led to isolation of reduced and oxidized congeners. Characterization by various spectroscopies and single-crystal X-ray diffraction concluded that reduction of the FeNi parent yielded [FeNi]-, a rare example of a high-spin {Fe(NO)}8, described as linear FeII(NO-). Mössbauer data is diagnostic for the redox change at the {Fe(NO)}7/8 site. Oxidation of FeNi generated the 2[FeNi]+⇌[Fe2Ni2]2+ equilibrium in solution; crystallization yields only the [Fe2Ni2]2+ dimer, isolated as PF6- and BArF- salts. The monomer is a spin-coupled diradical between {Fe(NO)}7 and NiDT+, while dimerization couples the two NiDT+ via a Ni2S2 rhomb. Magnetic susceptibility studies on the dimer found a singlet ground state with a thermally accessible triplet excited state responsible for the magnetism at 300 K (χMT = 0.67 emu·K·mol-1, µeff = 2.31 µB), and detectable by parallel-mode EPR spectroscopy at 20 to 50 K. A theoretical model built on an H4 chain explains this unexpected low energy triplet state arising from a combination of anti- and ferromagnetic coupling of a four-radical molecular conglomerate.

20.
Dalton Trans ; 51(18): 7305-7320, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35482287

RESUMEN

Diphenyldiazomethane and a labile chlorobenzene complex of [(η5-C5H5)Re(NO)(PPh3)]+ BF4- react to give the η1 adduct [(η5-C5H5)Re(NO)(PPh3)(NNCPh2)]+ BF4- (73%). When this is conducted in the presence of copper powder, a 3-phenyl-1H-indazole complex derived from carbon-hydrogen bond activation, [(η5-C5H5)Re(NO)(PPh3)(NC(Ph)CCHCHCHCHCNH)]+ BF4-, is obtained (65%). Subsequent reaction with NaOCH3 gives indazolyl complex (η5-C5H5)Re(NO)(PPh3)(NCCHCHCHCHCC(Ph)N) (85%), derived from NH deprotonation and a 1,2-rhenium shift. Crystal structures of the three new complexes are determined. DFT calculations are used to probe the mechanism of the 1,2-shift and energetics of alternative Re-N rotamers and linkage isomers, and assign bond orders and dominant resonance formulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...