Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Genet ; 15: 1203577, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818035

RESUMEN

Cross-sectional data allow the investigation of how genetics influence health at a single time point, but to understand how the genome impacts phenotype development, one must use repeated measures data. Ignoring the dependency inherent in repeated measures can exacerbate false positives and requires the utilization of methods other than general or generalized linear models. Many methods can accommodate longitudinal data, including the commonly used linear mixed model and generalized estimating equation, as well as the less popular fixed-effects model, cluster-robust standard error adjustment, and aggregate regression. We simulated longitudinal data and applied these five methods alongside naïve linear regression, which ignored the dependency and served as a baseline, to compare their power, false positive rate, estimation accuracy, and precision. The results showed that the naïve linear regression and fixed-effects models incurred high false positive rates when analyzing a predictor that is fixed over time, making them unviable for studying time-invariant genetic effects. The linear mixed models maintained low false positive rates and unbiased estimation. The generalized estimating equation was similar to the former in terms of power and estimation, but it had increased false positives when the sample size was low, as did cluster-robust standard error adjustment. Aggregate regression produced biased estimates when predictor effects varied over time. To show how the method choice affects downstream results, we performed longitudinal analyses in an adolescent cohort of African and European ancestry. We examined how developing post-traumatic stress symptoms were predicted by polygenic risk, traumatic events, exposure to sexual abuse, and income using four approaches-linear mixed models, generalized estimating equations, cluster-robust standard error adjustment, and aggregate regression. While the directions of effect were generally consistent, coefficient magnitudes and statistical significance differed across methods. Our in-depth comparison of longitudinal methods showed that linear mixed models and generalized estimating equations were applicable in most scenarios requiring longitudinal modeling, but no approach produced identical results even if fit to the same data. Since result discrepancies can result from methodological choices, it is crucial that researchers determine their model a priori, refrain from testing multiple approaches to obtain favorable results, and utilize as similar as possible methods when seeking to replicate results.

2.
Neurobiol Aging ; 133: 67-77, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913627

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory and functional impairments. Two of 3 patients with AD are biologically female; therefore, the biological underpinnings of this diagnosis disparity may inform interventions slowing the AD progression. To bridge this gap, we conducted analyses of 1078 male and female participants from the Alzheimer's Disease Neuroimaging Initiative to examine associations between levels of cerebral spinal fluid (CSF)/neuroimaging biomarkers and cognitive/functional outcomes. The Chow test was used to quantify sex differences by determining if biological sex affects relationships between the studied biomarkers and outcomes. Multiple magnetic resonance imaging (whole brain, entorhinal cortex, middle temporal gyrus, fusiform gyrus, hippocampus), position emission tomography (AV45), and CSF (P-TAU, TAU) biomarkers were differentially associated with cognitive and functional outcomes. Post-hoc bootstrapped and association analyses confirmed these differential effects and emphasized the necessity of using separate, sex-stratified models. The studied imaging/CSF biomarkers may account for some of the sex-based variation in AD pathophysiology. The identified sex-varying relationships between CSF/imaging biomarkers and cognitive/functional outcomes warrant future biological investigation in independent cohorts.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/patología , Neuroimagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Cognición , Biomarcadores , Proteínas tau , Péptidos beta-Amiloides , Disfunción Cognitiva/patología
3.
Front Neurosci ; 17: 1145923, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483339

RESUMEN

Background: Circulating small RNAs (smRNAs) originate from diverse tissues and organs. Previous studies investigating smRNAs as potential biomarkers for Parkinson's disease (PD) have yielded inconsistent results. We investigated whether smRNA profiles from neuronally-enriched serum exosomes and microvesicles are altered in PD patients and discriminate PD subjects from controls. Methods: Demographic, clinical, and serum samples were obtained from 60 PD subjects and 40 age- and sex-matched controls. Exosomes and microvesicles were extracted and isolated using a validated neuronal membrane marker (CD171). Sequencing and bioinformatics analyses were used to identify differentially expressed smRNAs in PD and control samples. SmRNAs also were tested for association with clinical metrics. Logistic regression and random forest classification models evaluated the discriminative value of the smRNAs. Results: In serum CD171 enriched exosomes and microvesicles, a panel of 29 smRNAs was expressed differentially between PD and controls (false discovery rate (FDR) < 0.05). Among the smRNAs, 23 were upregulated and 6 were downregulated in PD patients. Pathway analysis revealed links to cellular proliferation regulation and signaling. Least absolute shrinkage and selection operator adjusted for the multicollinearity of these smRNAs and association tests to clinical parameters via linear regression did not yield significant results. Univariate logistic regression models showed that four smRNAs achieved an AUC ≥ 0.74 to discriminate PD subjects from controls. The random forest model had an AUC of 0.942 for the 29 smRNA panel. Conclusion: CD171-enriched exosomes and microvesicles contain the differential expression of smRNAs between PD and controls. Future studies are warranted to follow up on the findings and understand the scientific and clinical relevance.

4.
Cell Rep ; 42(7): 112794, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459233

RESUMEN

Relapse of acute myeloid leukemia (AML) remains a significant concern due to persistent leukemia-initiating stem cells (LICs) that are typically not targeted by most existing therapies. Using a murine AML model, human AML cell lines, and patient samples, we show that AML LICs are sensitive to endogenous and exogenous cyclopentenone prostaglandin-J (CyPG), Δ12-PGJ2, and 15d-PGJ2, which are increased upon dietary selenium supplementation via the cyclooxygenase-hematopoietic PGD synthase pathway. CyPGs are endogenous ligands for peroxisome proliferator-activated receptor gamma and GPR44 (CRTH2; PTGDR2). Deletion of GPR44 in a mouse model of AML exacerbated the disease suggesting that GPR44 activation mediates selenium-mediated apoptosis of LICs. Transcriptomic analysis of GPR44-/- LICs indicated that GPR44 activation by CyPGs suppressed KRAS-mediated MAPK and PI3K/AKT/mTOR signaling pathways, to enhance apoptosis. Our studies show the role of GPR44, providing mechanistic underpinnings of the chemopreventive and chemotherapeutic properties of selenium and CyPGs in AML.


Asunto(s)
Leucemia Mieloide Aguda , Selenio , Humanos , Ratones , Animales , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Línea Celular
5.
bioRxiv ; 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36945370

RESUMEN

Inflammation skews bone marrow hematopoiesis increasing the production of myeloid effector cells at the expense of steady-state erythropoiesis. A compensatory stress erythropoiesis response is induced to maintain homeostasis until inflammation is resolved. In contrast to steady-state erythroid progenitors, stress erythroid progenitors (SEPs) utilize signals induced by inflammatory stimuli. However, the mechanistic basis for this is not clear. Here we reveal a nitric oxide (NO)-dependent regulatory network underlying two stages of stress erythropoiesis, namely proliferation, and the transition to differentiation. In the proliferative stage, immature SEPs and cells in the niche increased expression of inducible nitric oxide synthase ( Nos2 or iNOS ) to generate NO. Increased NO rewires SEP metabolism to increase anabolic pathways, which drive the biosynthesis of nucleotides, amino acids and other intermediates needed for cell division. This NO-dependent metabolism promotes cell proliferation while also inhibiting erythroid differentiation leading to the amplification of a large population of non-committed progenitors. The transition of these progenitors to differentiation is mediated by the activation of nuclear factor erythroid 2-related factor 2 (Nfe2l2 or Nrf2). Nrf2 acts as an anti-inflammatory regulator that decreases NO production, which removes the NO-dependent erythroid inhibition and allows for differentiation. These data provide a paradigm for how alterations in metabolism allow inflammatory signals to amplify immature progenitors prior to differentiation. Key points: Nitric-oxide (NO) dependent signaling favors an anabolic metabolism that promotes proliferation and inhibits differentiation.Activation of Nfe2l2 (Nrf2) decreases NO production allowing erythroid differentiation.

6.
Redox Biol ; 59: 102571, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36516721

RESUMEN

Macrophages play a pivotal role in mediating inflammation and subsequent resolution of inflammation. The availability of selenium as a micronutrient and the subsequent biosynthesis of selenoproteins, containing the 21st amino acid selenocysteine (Sec), are important for the physiological functions of macrophages. Selenoproteins regulate the redox tone in macrophages during inflammation, the early onset of which involves oxidative burst of reactive oxygen and nitrogen species. SELENOW is a highly expressed selenoprotein in bone marrow-derived macrophages (BMDMs). Beyond its described general role as a thiol and peroxide reductase and as an interacting partner for 14-3-3 proteins, its cellular functions, particularly in macrophages, remain largely unknown. In this study, we utilized Selenow knock-out (KO) murine bone marrow-derived macrophages (BMDMs) to address the role of SELENOW in inflammation following stimulation with bacterial endotoxin lipopolysaccharide (LPS). RNAseq-based temporal analyses of expression of selenoproteins and the Sec incorporation machinery genes suggested no major differences in the selenium utilization pathway in the Selenow KO BMDMs compared to their wild-type counterparts. However, selective enrichment of oxidative stress-related selenoproteins and increased ROS in Selenow-/- BMDMs indicated anomalies in redox homeostasis associated with hierarchical expression of selenoproteins. Selenow-/- BMDMs also exhibited reduced expression of arginase-1, a key enzyme associated with anti-inflammatory (M2) phenotype necessary to resolve inflammation, along with a significant decrease in efferocytosis of neutrophils that triggers pathways of resolution. Parallel targeted metabolomics analysis also confirmed an impairment in arginine metabolism in Selenow-/- BMDMs. Furthermore, Selenow-/- BMDMs lacked the ability to enhance characteristic glycolytic metabolism during inflammation. Instead, these macrophages atypically relied on oxidative phosphorylation for energy production when glucose was used as an energy source. These findings suggest that SELENOW expression in macrophages may have important implications on cellular redox processes and bioenergetics during inflammation and its resolution.


Asunto(s)
Selenio , Selenoproteína W , Ratones , Animales , Selenoproteína W/genética , Selenoproteína W/metabolismo , Selenio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Macrófagos/metabolismo , Oxidación-Reducción , Inflamación/genética
7.
Polymers (Basel) ; 14(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893942

RESUMEN

Thermoset polymer composites have increased in use across multiple industries, with recent applications consisting of high-complexity and large-scale parts. As applications expand, the emphasis on accurate process-monitoring techniques has increased, with a variety of in situ cure-monitoring sensors being investigated by various research teams. To date, a wide range of data analysis techniques have been used to correlate data collected from thermocouple, dielectric, ultrasonic, and fibre-optic sensors to information on the material cure state. The methods used in existing publications have not been explicitly differentiated between, nor have they been directly compared. This paper provides a critical review of the different data collection and cure state correlation methods for these sensor types. The review includes details of the relevant sensor configurations and governing equations, material combinations, data verification techniques, identified potential research gaps, and areas of improvement. A wide range of both qualitative and quantitative analysis methods are discussed for each sensing technology. Critical analysis is provided on the capability and limitations of these methods to directly identify cure state information for the materials under investigation. This paper aims to provide the reader with sufficient background on available analysis techniques to assist in selecting the most appropriate method for the application.

8.
Sci Rep ; 12(1): 8328, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585103

RESUMEN

New insights into mechanisms linking obesity to poor health outcomes suggest a role for cellular aging pathways, casting obesity as a disease of accelerated biological aging. Although obesity has been linked to accelerated epigenetic aging in middle-aged adults, the impact during childhood remains unclear. We tested the association between body mass index (BMI) and accelerated epigenetic aging in a cohort of high-risk children. Participants were children (N = 273, aged 8 to 14 years, 82% investigated for maltreatment) recruited to the Child Health Study, an ongoing prospective study of youth investigated for maltreatment and a comparison youth. BMI was measured as a continuous variable. Accelerated epigenetic aging of blood leukocytes was defined as the age-adjusted residuals of several established epigenetic aging clocks (Horvath, Hannum, GrimAge, PhenoAge) along with a newer algorithm, the DunedinPoAm, developed to quantify the pace-of-aging. Hypotheses were tested with generalized linear models. Higher age-and sex- adjusted z-scored BMI was significantly correlated with household income, blood cell counts, and three of the accelerated epigenetic aging measures: GrimAge (r = 0.31, P < .0001), PhenoAge (r = 0.24, P < .0001), and DunedinPoAm (r = 0.38, P < .0001). In fully adjusted models, GrimAge (ß = 0.07; P = .0009) and DunedinPoAm (ß = 0.0017; P < .0001) remained significantly associated with higher age- and sex-adjusted z-scored BMI. Maltreatment-status was not associated with accelerated epigenetic aging. In a high-risk cohort of children, higher BMI predicted epigenetic aging as assessed by two epigenetic aging clocks. These results suggest the association between obesity and accelerated epigenetic aging begins in early life, with implications for future morbidity and mortality risk.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Adolescente , Adulto , Envejecimiento/genética , Niño , Humanos , Persona de Mediana Edad , Obesidad/genética , Estudios Prospectivos
9.
Artículo en Inglés | MEDLINE | ID: mdl-35445209

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia; however, men and women face differential AD prevalence, presentation, and progression risks. Characterizing metabolomic profiles during AD progression is fundamental to understand the metabolic disruptions and the biological pathways involved. However, outstanding questions remain of whether peripheral metabolic changes occur equally in men and women with AD. Here, we evaluated differential effects of metabolomic and brain volume associations between sexes. We used three cohorts from the Alzheimer's Disease Neuroimaging Initiative (ADNI), evaluated 1,368 participants, two metabolomic platforms with 380 metabolites in total, and six brain segment volumes. Using dimension reduction techniques, we took advantage of the correlation structure of the brain volume phenotypes and the metabolite concentration values to reduce the number of tests while aggregating relevant biological structures. Using WGCNA, we aggregated modules of highly co-expressed metabolites. On the other hand, we used partial least squares regression-discriminant analysis (PLS-DA) to extract components of brain volumes that maximally co-vary with AD diagnosis as phenotypes. We tested for differences in effect sizes between sexes in the association between single metabolite and metabolite modules with the brain volume components. We found five metabolite modules and 125 single metabolites with significant differences between sexes. These results highlight a differential lipid disruption in AD progression between sexes. Men showed a greater negative association of phosphatidylcholines and sphingomyelins and a positive association of VLDL and large LDL with AD progression. In contrast, women showed a positive association of triglycerides in VLDL and small and medium LDL with AD progression. Explicitly identifying sex differences in metabolomics during AD progression can highlight particular metabolic disruptions in each sex. Our research study and strategy can lead to better-tailored studies and better-suited treatments that take sex differences into account.

10.
J Biomed Inform ; 129: 104054, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35331966

RESUMEN

Vaccination is the most effective way to provide long-lasting immunity against viral infection; thus, rapid assessment of vaccine acceptance is a pressing challenge for health authorities. Prior studies have applied survey techniques to investigate vaccine acceptance, but these may be slow and expensive. This study investigates 29 million vaccine-related tweets from August 8, 2020 to April 19, 2021 and proposes a social media-based approach that derives a vaccine acceptance index (VAI) to quantify Twitter users' opinions on COVID-19 vaccination. This index is calculated based on opinion classifications identified with the aid of natural language processing techniques and provides a quantitative metric to indicate the level of vaccine acceptance across different geographic scales in the U.S. The VAI is easily calculated from the number of positive and negative Tweets posted by a specific users and groups of users, it can be compiled for regions such a counties or states to provide geospatial information, and it can be tracked over time to assess changes in vaccine acceptance as related to trends in the media and politics. At the national level, it showed that the VAI moved from negative to positive in 2020 and maintained steady after January 2021. Through exploratory analysis of state- and county-level data, reliable assessments of VAI against subsequent vaccination rates could be made for counties with at least 30 users. The paper discusses information characteristics that enable consistent estimation of VAI. The findings support the use of social media to understand opinions and to offer a timely and cost-effective way to assess vaccine acceptance.


Asunto(s)
COVID-19 , Medios de Comunicación Sociales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Procesamiento de Lenguaje Natural , Vacunación
11.
Pac Symp Biocomput ; 26: 309-315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34409132

RESUMEN

The environment plays an important role in mediating human health. In this session we consider research addressing ways to overcome the challenges associated with studying the multifaceted and ever-changing environment. Environmental health research has a need for technological and methodological advances which will further our knowledge of how exposures precipitate complex phenotypes and exacerbate disease.


Asunto(s)
Biología Computacional , Salud Ambiental , Humanos , Fenotipo
12.
PLoS Genet ; 17(6): e1009534, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34086673

RESUMEN

Assumptions are made about the genetic model of single nucleotide polymorphisms (SNPs) when choosing a traditional genetic encoding: additive, dominant, and recessive. Furthermore, SNPs across the genome are unlikely to demonstrate identical genetic models. However, running SNP-SNP interaction analyses with every combination of encodings raises the multiple testing burden. Here, we present a novel and flexible encoding for genetic interactions, the elastic data-driven genetic encoding (EDGE), in which SNPs are assigned a heterozygous value based on the genetic model they demonstrate in a dataset prior to interaction testing. We assessed the power of EDGE to detect genetic interactions using 29 combinations of simulated genetic models and found it outperformed the traditional encoding methods across 10%, 30%, and 50% minor allele frequencies (MAFs). Further, EDGE maintained a low false-positive rate, while additive and dominant encodings demonstrated inflation. We evaluated EDGE and the traditional encodings with genetic data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes: age-related macular degeneration (AMD), age-related cataract, glaucoma, type 2 diabetes (T2D), and resistant hypertension. A multi-encoding genome-wide association study (GWAS) for each phenotype was performed using the traditional encodings, and the top results of the multi-encoding GWAS were considered for SNP-SNP interaction using the traditional encodings and EDGE. EDGE identified a novel SNP-SNP interaction for age-related cataract that no other method identified: rs7787286 (MAF: 0.041; intergenic region of chromosome 7)-rs4695885 (MAF: 0.34; intergenic region of chromosome 4) with a Bonferroni LRT p of 0.018. A SNP-SNP interaction was found in data from the UK Biobank within 25 kb of these SNPs using the recessive encoding: rs60374751 (MAF: 0.030) and rs6843594 (MAF: 0.34) (Bonferroni LRT p: 0.026). We recommend using EDGE to flexibly detect interactions between SNPs exhibiting diverse action.


Asunto(s)
Modelos Genéticos , Catarata/genética , Conjuntos de Datos como Asunto , Diabetes Mellitus Tipo 2/genética , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Glaucoma/genética , Humanos , Hipertensión/genética , Degeneración Macular/genética , Fenotipo , Polimorfismo de Nucleótido Simple
13.
Psychoneuroendocrinology ; 129: 105254, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022589

RESUMEN

BACKGROUND: Childhood sexual abuse (CSA) confers elevated risks for obesity in females. Mechanisms that explain this link remain unclear. This study tracked serum basal cortisol levels with body mass index (BMI) from childhood into adulthood to test whether hypothalamic-pituitary-adrenal (HPA) axis attenuation accounts for elevated obesity risks for sexually abused females. METHODS: Data drew from six timepoints of a longitudinal study of the impact of CSA on development. Participants were females aged 6-16 years at time of study enrollment with substantiated CSA and demographically matched non-abused peers. Analyses included only participants who did not have obesity at study enrollment. Main outcomes were BMI growth trajectories across ages 6-27 (n = 150; 66 abused, 84 comparisons) and early adulthood obesity status (ages 20-27; n = 133; 62 abused, 71 comparison). HPA axis functioning indicators were intercept and linear slope parameters extracted from multilevel growth trajectories of serum basal cortisol levels across development. Racial-ethnic minority status, parity, steroid medication use, depression history and disordered eating history were covaried. RESULTS: While controlling for covariates, multilevel modeling indicated that high initial serum basal cortisol levels in childhood and attenuated cortisol growth rate over time (i.e., HPA axis attenuation) were associated with accelerated BMI accumulation (p < .01). Attenuated cortisol growth rate mediated the effect of CSA on accelerated BMI accumulation and on elevated adulthood obesity rates (p < .05). CONCLUSION: This work establishes a mechanistic association between HPA axis attenuation and obesity, suggesting that trauma treatments for abuse survivors should include interventions that reduce health consequences associated with dysregulated stress physiology.


Asunto(s)
Abuso Sexual Infantil , Sistema Hipotálamo-Hipofisario , Obesidad , Sistema Hipófiso-Suprarrenal , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Abuso Sexual Infantil/estadística & datos numéricos , Femenino , Humanos , Hidrocortisona/sangre , Sistema Hipotálamo-Hipofisario/fisiopatología , Estudios Longitudinales , Obesidad/sangre , Obesidad/epidemiología , Sistema Hipófiso-Suprarrenal/fisiopatología , Medición de Riesgo , Adulto Joven
14.
Pac Symp Biocomput ; 26: 316-327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33691028

RESUMEN

Environmental exposure pathophysiology related to smoking can yield metabolic changes that are difficult to describe in a biologically informative fashion with manual proprietary software. Nuclear magnetic resonance (NMR) spectroscopy detects compounds found in biofluids yielding a metabolic snapshot. We applied our semi-automated NMR pipeline for a secondary analysis of a smoking study (MTBLS374 from the MetaboLights repository) (n = 112). This involved quality control (in the form of data preprocessing), automated metabolite quantification, and analysis. With our approach we putatively identified 79 metabolites that were previously unreported in the dataset. Quantified metabolites were used for metabolic pathway enrichment analysis that replicated 1 enriched pathway with the original study as well as 3 previously unreported pathways. Our pipeline generated a new random forest (RF) classifier between smoking classes that revealed several combinations of compounds. This study broadens our metabolomic understanding of smoking exposure by 1) notably increasing the number of quantified metabolites with our analytic pipeline, 2) suggesting smoking exposure may lead to heterogenous metabolic responses according to random forest modeling, and 3) modeling how newly quantified individual metabolites can determine smoking status. Our approach can be applied to other NMR studies to characterize environmental risk factors, allowing for the discovery of new biomarkers of disease and exposure status.


Asunto(s)
No Fumadores , Fumadores , Biología Computacional , Humanos , Espectroscopía de Resonancia Magnética , Metabolómica
15.
PLoS One ; 15(9): e0238304, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32915819

RESUMEN

Epistasis analysis elucidates the effects of gene-gene interactions (G×G) between multiple loci for complex traits. However, the large computational demands and the high multiple testing burden impede their discoveries. Here, we illustrate the utilization of two methods, main effect filtering based on individual GWAS results and biological knowledge-based modeling through Biofilter software, to reduce the number of interactions tested among single nucleotide polymorphisms (SNPs) for 15 cardiac-related traits and 14 fatty acids. We performed interaction analyses using the two filtering methods, adjusting for age, sex, body mass index (BMI), waist-hip ratio, and the first three principal components from genetic data, among 2,824 samples from the Ludwigshafen Risk and Cardiovascular (LURIC) Health Study. Using Biofilter, one interaction nearly met Bonferroni significance: an interaction between rs7735781 in XRCC4 and rs10804247 in XRCC5 was identified for venous thrombosis with a Bonferroni-adjusted likelihood ratio test (LRT) p: 0.0627. A total of 57 interactions were identified from main effect filtering for the cardiac traits G×G (10) and fatty acids G×G (47) at Bonferroni-adjusted LRT p < 0.05. For cardiac traits, the top interaction involved SNPs rs1383819 in SNTG1 and rs1493939 (138kb from 5' of SAMD12) with Bonferroni-adjusted LRT p: 0.0228 which was significantly associated with history of arterial hypertension. For fatty acids, the top interaction between rs4839193 in KCND3 and rs10829717 in LOC107984002 with Bonferroni-adjusted LRT p: 2.28×10-5 was associated with 9-trans 12-trans octadecanoic acid, an omega-6 trans fatty acid. The model inflation factor for the interactions under different filtering methods was evaluated from the standard median and the linear regression approach. Here, we applied filtering approaches to identify numerous genetic interactions related to cardiac-related outcomes as potential targets for therapy. The approaches described offer ways to detect epistasis in the complex traits and to improve precision medicine capability.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Biología Computacional/métodos , Epistasis Genética , Ácidos Grasos/sangre , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/genética , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Estudio de Asociación del Genoma Completo , Alemania/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Pronóstico , Estudios Prospectivos , Adulto Joven
16.
Pac Symp Biocomput ; 25: 659-670, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31797636

RESUMEN

Phenome-wide association studies (PheWAS) allow agnostic investigation of common genetic variants in relation to a variety of phenotypes but preserving the power of PheWAS requires careful phenotypic quality control (QC) procedures. While QC of genetic data is well-defined, no established QC practices exist for multi-phenotypic data. Manually imposing sample size restrictions, identifying variable types/distributions, and locating problems such as missing data or outliers is arduous in large, multivariate datasets. In this paper, we perform two PheWAS on epidemiological data and, utilizing the novel software CLARITE (CLeaning to Analysis: Reproducibility-based Interface for Traits and Exposures), showcase a transparent and replicable phenome QC pipeline which we believe is a necessity for the field. Using data from the Ludwigshafen Risk and Cardiovascular (LURIC) Health Study we ran two PheWAS, one on cardiac-related diseases and the other on polyunsaturated fatty acids levels. These phenotypes underwent a stringent quality control screen and were regressed on a genome-wide sample of single nucleotide polymorphisms (SNPs). Seven SNPs were significant in association with dihomo-γ-linolenic acid, of which five were within fatty acid desaturases FADS1 and FADS2. PheWAS is a useful tool to elucidate the genetic architecture of complex disease phenotypes within a single experimental framework. However, to reduce computational and multiple-comparisons burden, careful assessment of phenotype quality and removal of low-quality data is prudent. Herein we perform two PheWAS while applying a detailed phenotype QC process, for which we provide a replicable pipeline that is modifiable for application to other large datasets with heterogenous phenotypes. As investigation of complex traits continues beyond traditional genome wide association studies (GWAS), such QC considerations and tools such as CLARITE are crucial to the in the analysis of non-genetic big data such as clinical measurements, lifestyle habits, and polygenic traits.


Asunto(s)
Enfermedades Cardiovasculares , Biología Computacional , Ácidos Grasos , Estudio de Asociación del Genoma Completo , Fenotipo , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Biología Computacional/métodos , delta-5 Desaturasa de Ácido Graso , Estudios Epidemiológicos , Estudios de Asociación Genética , Estado de Salud , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
17.
Front Genet ; 10: 1240, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921293

RESUMEN

While genome-wide association studies are an established method of identifying genetic variants associated with disease, environment-wide association studies (EWAS) highlight the contribution of nongenetic components to complex phenotypes. However, the lack of high-throughput quality control (QC) pipelines for EWAS data lends itself to analysis plans where the data are cleaned after a first-pass analysis, which can lead to bias, or are cleaned manually, which is arduous and susceptible to user error. We offer a novel software, CLeaning to Analysis: Reproducibility-based Interface for Traits and Exposures (CLARITE), as a tool to efficiently clean environmental data, perform regression analysis, and visualize results on a single platform through user-guided automation. It exists as both an R package and a Python package. Though CLARITE focuses on EWAS, it is intended to also improve the QC process for phenotypes and clinical lab measures for a variety of downstream analyses, including phenome-wide association studies and gene-environment interaction studies. With the goal of demonstrating the utility of CLARITE, we performed a novel EWAS in the National Health and Nutrition Examination Survey (NHANES) (N overall Discovery=9063, N overall Replication=9874) for body mass index (BMI) and over 300 environment variables post-QC, adjusting for sex, age, race, socioeconomic status, and survey year. The analysis used survey weights along with cluster and strata information in order to account for the complex survey design. Sixteen BMI results replicated at a Bonferroni corrected p < 0.05. The top replicating results were serum levels of g-tocopherol (vitamin E) (Discovery Bonferroni p: 8.67x10-12, Replication Bonferroni p: 2.70x10-9) and iron (Discovery Bonferroni p: 1.09x10-8, Replication Bonferroni p: 1.73x10-10). Results of this EWAS are important to consider for metabolic trait analysis, as BMI is tightly associated with these phenotypes. As such, exposures predictive of BMI may be useful for covariate and/or interaction assessment of metabolic-related traits. CLARITE allows improved data quality for EWAS, gene-environment interactions, and phenome-wide association studies by establishing a high-throughput quality control infrastructure. Thus, CLARITE is recommended for studying the environmental factors underlying complex disease.

18.
Pac Symp Biocomput ; 23: 548-558, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29218913

RESUMEN

We utilized evidence for enhancer-promoter interactions from functional genomics data in order to build biological filters to narrow down the search space for two-way Single Nucleotide Polymorphism (SNP) interactions in Type 2 Diabetes (T2D) Genome Wide Association Studies (GWAS). This has led us to the identification of a reproducible statistically significant SNP pair associated with T2D. As more functional genomics data are being generated that can help identify potentially interacting enhancer-promoter pairs in larger collection of tissues/cells, this approach has implications for investigation of epistasis from GWAS in general.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Epistasis Genética , Biología Computacional/métodos , Bases de Datos Genéticas/estadística & datos numéricos , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Genómica/estadística & datos numéricos , Humanos , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
19.
Nat Commun ; 8(1): 1167, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079728

RESUMEN

Genome-wide, imputed, sequence, and structural data are now available for exceedingly large sample sizes. The needs for data management, handling population structure and related samples, and performing associations have largely been met. However, the infrastructure to support analyses involving complexity beyond genome-wide association studies is not standardized or centralized. We provide the PLatform for the Analysis, Translation, and Organization of large-scale data (PLATO), a software tool equipped to handle multi-omic data for hundreds of thousands of samples to explore complexity using genetic interactions, environment-wide association studies and gene-environment interactions, phenome-wide association studies, as well as copy number and rare variant analyses. Using the data from the Marshfield Personalized Medicine Research Project, a site in the electronic Medical Records and Genomics Network, we apply each feature of PLATO to type 2 diabetes and demonstrate how PLATO can be used to uncover the complex etiology of common traits.


Asunto(s)
Biología Computacional , Genoma Humano , Estudio de Asociación del Genoma Completo , Consumo de Bebidas Alcohólicas , Alelos , Bases de Datos Genéticas , Diabetes Mellitus Tipo 2/genética , Dieta , Epistasis Genética , Eliminación de Gen , Dosificación de Gen , Interacción Gen-Ambiente , Genómica , Genotipo , Glutamato Descarboxilasa/genética , Humanos , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Lenguajes de Programación , Recurrencia , Análisis de Secuencia de ADN , Programas Informáticos , Encuestas y Cuestionarios
20.
Curr Protoc Hum Genet ; 95: 1.14.1-1.14.10, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044470

RESUMEN

The goal of this unit is to introduce epistasis, or gene-gene interactions, as a significant contributor to the genetic architecture of complex traits, including disease susceptibility. This unit begins with an historical overview of the concept of epistasis and the challenges inherent in the identification of potential gene-gene interactions. Then, it reviews statistical and machine learning methods for discovering epistasis in the context of genetic studies of quantitative and categorical traits. This unit concludes with a discussion of meta-analysis, replication, and other topics of active research. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Epistasis Genética , Regulación de la Expresión Génica , Genómica , Algoritmos , Animales , Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Genómica/métodos , Humanos , Aprendizaje Automático , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...