Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Bioengineering (Basel) ; 11(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38927777

RESUMEN

Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical and tribological properties primarily attributed to lubrication failure. Understanding the reasons behind these failures and identifying potential solutions could have significant economic and societal implications, ultimately enhancing quality of life. This review provides an overview of developments in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the role of lubrication in degraded AC, offering insights into its structure and function relationship. Further, it explores the fundamental connection between AC mechano-tribological properties and the advancement of its degradation and puts forth recommendations for strategies to boost its lubrication efficiency.

2.
Langmuir ; 40(20): 10648-10662, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712915

RESUMEN

This study presents new insights into the potential role of polyelectrolyte interfaces in regulating low friction and interstitial fluid pressurization of cartilage. Polymer brushes composed of hydrophilic 3-sulfopropyl methacrylate potassium salt (SPMK) tethered to a PEEK substrate (SPMK-g-PEEK) are a compelling biomimetic solution for interfacing with cartilage, inspired by the natural lubricating biopolyelectrolyte constituents of synovial fluid. These SPMK-g-PEEK surfaces exhibit a hydrated compliant layer approximately 5 µm thick, demonstrating the ability to maintain low friction coefficients (µ ∼ 0.01) across a wide speed range (0.1-200 mm/s) under physiological loads (0.75-1.2 MPa). A novel polyelectrolyte-enhanced tribological rehydration mechanism is elucidated, capable of recovering up to ∼12% cartilage strain and subsequently facilitating cartilage interstitial fluid recovery, under loads ranging from 0.25 to 2.21 MPa. This is attributed to the combined effects of fluid confinement within the contact gap and the enhanced elastohydrodynamic behavior of polymer brushes. Contrary to conventional theories that emphasize interstitial fluid pressurization in regulating cartilage lubrication, this work demonstrates that SPMK-g-PEEK's frictional behavior with cartilage is independent of these factors and provides unabating aqueous lubrication. Polyelectrolyte-enhanced tribological rehydration can occur within a static contact area and operates independently of known mechanisms of cartilage interstitial fluid recovery established for converging or migrating cartilage contacts. These findings challenge existing paradigms, proposing a novel polyelectrolyte-cartilage tribological mechanism not exclusively reliant on interstitial fluid pressurization or cartilage contact geometry. The implications of this research extend to a broader understanding of synovial joint lubrication, offering insights into the development of joint replacement materials that more accurately replicate the natural functionality of cartilage.


Asunto(s)
Lubrificación , Polímeros , Polímeros/química , Animales , Polielectrolitos/química , Polietilenglicoles/química , Cartílago/química , Cartílago/efectos de los fármacos , Propiedades de Superficie , Benzofenonas/química , Cartílago Articular/química , Cartílago Articular/fisiología , Cetonas/química
3.
J Mech Behav Biomed Mater ; 147: 106084, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683556

RESUMEN

To enable long lasting osteochondral defect repairs which preserve the native function of synovial joint counter-face, it is essential to develop surfaces which are optimised to support healthy cartilage function by providing a hydrated, low friction and compliant sliding interface. PEEK surfaces were modified using a biocompatible 3-sulfopropyl methacrylate potassium salt (SPMK) through UV photo-polymerisation, resulting in a ∼350 nm thick hydrophilic coating rich in hydrophilic anionic sulfonic acid groups. Characterisation was done through Fourier Transformed Infrared Spectroscopy, Focused Ion Beam Scanning Electron Microscopy, and Water Contact Angle measurements. Using a Bruker UMT TriboLab, bovine cartilage sliding tests were conducted with real-time strain and shear force measurements, comparing untreated PEEK, SPMK functionalised PEEK (SPMK-g-PEEK), and Cobalt Chrome Molybdenum alloy. Tribological tests over 2.5 h at physiological loads (0.75 MPa) revealed that SPMK-g-PEEK maintains low friction (µ< 0.024) and minimises equilibrium strain, significantly reducing forces on the cartilage interface. Post-test analysis showed no notable damage to the cartilage interfacing against the SPMK functionalised surfaces. The application of a constitutive biphasic cartilage model to the experimental strain data reveals that SPMK surfaces increase the interfacial permeability of cartilage in sliding, facilitating fluid and strain recovery. Unlike previous demonstrations of sliding-induced tribological rehydration requiring specific hydrodynamic conditions, the SPMK-g-PEEK introduces a novel mode of tribological rehydration operating at low speeds and in a stationary contact area. SPMK-g-PEEK surfaces provide an enhanced cartilage counter-surface, which provides a highly hydrated and lubricious boundary layer along with supporting biphasic lubrication. Soft polymer surface functionalisation of orthopaedic implant surfaces are a promising approach for minimally invasive synovial joint repair with an enhanced bioinspired polyelectrolyte interface for sliding against cartilage. These hydrophilic surface coatings offer an enabling technology for the next generation of focal cartilage repair and hemiarthroplasty implant surfaces.

5.
Front Bioeng Biotechnol ; 11: 1108021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362220

RESUMEN

Introduction: Polymer wear debris is one of the major concerns in total joint replacements due to wear-induced biological reactions which can lead to osteolysis and joint failure. The wear-induced biological reactions depend on the wear volume, shape and size of the wear debris and their volumetric concentration. The study of wear particles is crucial in analysing the failure modes of the total joint replacements to ensure improved designs and materials are introduced for the next generation of devices. Existing methods of wear debris analysis follow a traditional approach of computer-aided manual identification and segmentation of wear debris which encounters problems such as significant manual effort, time consumption, low accuracy due to user errors and biases, and overall lack of insight into the wear regime. Methods: This study proposes an automatic particle segmentation algorithm using adaptive thresholding followed by classification using Convolution Neural Network (CNN) to classify ultra-high molecular weight polyethylene polymer wear debris generated from total disc replacements tested in a spine simulator. A CNN takes object pixels as numeric input and uses convolution operations to create feature maps which are used to classify objects. Results: Classification accuracies of up to 96.49% were achieved for the identification of wear particles. Particle characteristics such as shape, size and area were estimated to generate size and volumetric distribution graphs. Discussion: The use of computer algorithms and CNN facilitates the analysis of a wider range of wear debris with complex characteristics with significantly fewer resources which results in robust size and volume distribution graphs for the estimation of the osteolytic potential of devices using functional biological activity estimates.

6.
Polymers (Basel) ; 14(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36297954

RESUMEN

In clinical trials, new scaffolds for regeneration after spinal cord injury (SCI) should reflect the importance of a mechanically optimised, hydrated environment. Composite scaffolds of nonwovens, self-assembling peptides (SAPs) and hydrogels offer the ability to mimic native spinal cord tissue, promote aligned tissue regeneration and tailor mechanical properties. This work studies the effects of an aligned electrospun nonwoven of P11-8-enriched poly(ε-caprolactone) (PCL) fibres, integrated with a photo-crosslinked hydrogel of glycidylmethacrylated collagen (collagen-GMA), on neurite extension. Mechanical properties of collagen-GMA hydrogel in compression and shear were recorded, along with cell viability. Collagen-GMA hydrogels showed J-shaped stress-strain curves in compression, mimicking native spinal cord tissue. For hydrogels prepared with a 0.8-1.1 wt.% collagen-GMA concentration, strain at break values were 68 ± 1-81 ± 1% (±SE); maximum stress values were 128 ± 9-311 ± 18 kPa (±SE); and maximum force values were 1.0 ± 0.1-2.5 ± 0.1 N (±SE). These values closely mimicked the compression values for feline and porcine tissue in the literature, especially those for 0.8 wt.%. Complex shear modulus values fell in the range 345-2588 Pa, with the lower modulus hydrogels in the range optimal for neural cell survival and growth. Collagen-GMA hydrogel provided an environment for homogenous and three-dimensional cell encapsulation, and high cell viability of 84 ± 2%. Combination of the aligned PCL/P11-8 electrospun nonwoven and collagen-GMA hydrogel retained fibre alignment and pore structure, respectively, and promoted aligned neurite extension of PC12 cells. Thus, it is possible to conclude that scaffolds with mechanical properties that both closely mimic native spinal cord tissue and are optimal for neural cells can be produced, which also promote aligned tissue regeneration when the benefits of hydrogels and electrospun nonwovens are combined.

7.
Mater Today Bio ; 15: 100270, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35601891

RESUMEN

Hip and knee joint replacements are common and largely successful procedures that utilise implants to restore mobility and relieve pain for patients suffering from e.g. osteoarthritis. However, metallic ions and particles released from both the bearing surfaces and non-articulating interfaces, as in modular components, can cause hypersensitivity and local tissue necrosis, while particles originating from a polymer component have been associated with aseptic loosening and osteolysis. Implant coatings have the potential to improve properties compared to both bulk metal and ceramic alternatives. Ceramic coatings have the potential to increase scratch resistance, enhance wettability and reduce wear of the articulating surfaces compared to the metallic substrate, whilst maintaining overall toughness of the implant ensuring a lower risk of catastrophic failure of the device compared to use of a bulk ceramic. Coatings can also act as barriers to inhibit ion release from the underlying material caused by corrosion. This review aims to provide a comprehensive overview of wear-resistant coatings for joint replacements - both those that are in current clinical use as well as those under investigation for future use. While the majority of coatings belong predominantly in the latter group, a few coated implants have been successfully marketed and are available for clinical use in specific applications. Commercially available coatings for implants include titanium nitride (TiN), titanium niobium nitride (TiNbN), oxidized zirconium (OxZr) and zirconium nitride (ZrN) based coatings, whereas current research is focused not only on these, but also on diamond-like-carbon (DLC), silicon nitride (SiN), chromium nitride (CrN) and tantalum-based coatings (TaN and TaO). The coating materials referred to above that are still at the research stage have been shown to be non-cytotoxic and to reduce wear in a laboratory setting. However, the adhesion of implant coatings remains a main area of concern, as poor adhesion can cause delamination and excessive wear. In clinical applications zirconium implant surfaces treated to achieve a zirconium oxide film and TiNbN coated implants have however been proven comparable to traditional cobalt chromium implants with regards to revision numbers. In addition, the chromium ion levels measured in the plasma of patients were lower and allergy symptoms were relieved. Therefore, coated implants could be considered an alternative to uncoated metal implants, in particular for patients with metal hypersensitivity. There have also been unsuccessful introductions to the market, such as DLC coated implants, and therefore this review also attempts to summarize the lessons learnt.

8.
JOR Spine ; 4(4): e1176, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35005442

RESUMEN

Being able to predict the mechanical properties of vertebrae in patients with osteoporosis and other relevant pathologies is essential to prevent fractures and to develop the most favorable fracture treatments. Furthermore, a reliable prediction is important for developing more patient- and pathology-specific biomaterials. A plethora of studies correlating bone density to mechanical properties has been reported; however, the results are variable, due to a variety of factors, including anatomical site and methodological differences. The aim of this study was to provide a comprehensive literature review on density and mechanical properties of human vertebral trabecular bone as well as relationships found between these properties. A literature search was performed to include studies, which investigated mechanical properties and bone density of trabecular bone. Only studies on vertebral trabecular bone tissue, reporting bone density or mechanical properties, were kept. A large variation in reported vertebral trabecular bone densities, mechanical properties, and relationships between the two was found, as exemplified by values varying between 0.09 and 0.35 g/cm3 for the wet apparent density and from 0.1 to 976 MPa for the elastic modulus. The differences were found to reflect variations in experimental and analytical processes that had been used, including testing protocol and specimen geometry. The variability in the data decreased in studies where bone tissue testing occurred in a standardized manner (eg, the reported differences in average elastic modulus decreased from 400% to 10%). It is important to take this variability into account when analyzing the predictions found in the literature, for example, to calculate fracture risk, and it is recommended to use the models suggested in the present review to reduce data variability.

9.
Front Bioeng Biotechnol ; 8: 581413, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537288

RESUMEN

In this study we have realized the need for an organ culture tooth in situ model to simulate the tooth structure especially the tooth attachment apparatus. The importance of such a model is to open avenues for investigating regeneration of the complex tooth and tooth attachment tissues and to reduce the need for experimental animals in investigating dental materials and treatments in the future. The aim of this study was to develop a porcine tooth in situ organ culture model and a novel bioreactor suitable for future studies of periodontal regeneration, including application of appropriate physiological loading. The Objectives of this study was to establish tissue viability, maintenance of tissue structure, and model sterility after 1 and 4 days of culture. To model diffusion characteristics within the organ culture system and design and develop a bioreactor that allows tooth loading and simulation of the chewing cycle. Methods: Twenty-one porcine first molars were dissected aseptically in situ within their bony sockets. Twelve were used to optimize sterility and determine tissue viability. The remainder were used in a 4-day organ culture study in basal medium. Sterility was determined for medium samples and swabs taken from all tissue components, using standard aerobic and anaerobic microbiological cultures. Tissue viability was determined at days 1 and 4 using an XTT assay and Glucose consumption assays. Maintenance of structure was confirmed using histology and histomorphometric analysis. Diffusion characteristics were investigated using micro-CT combined with finite element modeling. A suitable bioreactor was designed to permit longer term culture with application of mechanical loading to the tooth in situ. Result: XTT and Glucose consumption assays confirmed viability throughout the culture period for all tissues investigated. Histological and histomorphometric analysis confirmed maintenance of tissue structure. Clear microbiological cultures indicated maintenance of sterility within the organ culture system. The novel bioreactor showed no evidence of medium contamination after 4 days of culture. Finite element modeling indicated nutrient availability to the periodontium. Conclusion: A whole tooth in situ organ culture system was successfully maintained over 4 days in vitro.

10.
Sci Rep ; 8(1): 9109, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29904079

RESUMEN

The adverse biological impact of orthopaedic wear debris currently limits the long-term safety of human joint replacement devices. We investigated the role of particle size, surface composition and donor variation in influencing the biological impact of silicon nitride as a bioceramic for orthopaedic applications. Silicon nitride particles were compared to the other commonly used orthopaedic biomaterials (e.g. cobalt-chromium and Ti-6Al-4V alloys). A novel biological evaluation platform was developed to simultaneously evaluate cytotoxicity, inflammatory cytokine release, oxidative stress, and genotoxicity potential of particles using peripheral blood mononuclear cells (PBMNCs) from individual human donors. Irrespective of the particle size, silicon nitride did not cause any adverse responses whereas cobalt-chromium wear particles caused donor-dependent cytotoxicity, TNF-α cytokine release, oxidative stress, and DNA damage in PBMNCs after 24 h. Despite being similar in size and morphology, silicon dioxide nanoparticles caused the release of significantly higher levels of TNF-α compared to silicon nitride nanoparticles, suggesting that surface composition influences the inflammatory response in PBMNCs. Ti-6Al-4V wear particles also released significantly elevated levels of TNF-α cytokine in one of the donors. This study demonstrated that silicon nitride is an attractive orthopaedic biomaterial due to its minimal biological impact on human PBMNCs.


Asunto(s)
Variación Biológica Individual , Donantes de Sangre , Prótesis de Cadera , Leucocitos Mononucleares/metabolismo , Compuestos de Silicona/toxicidad , Adulto , Aleaciones , Aleaciones de Cromo/toxicidad , Daño del ADN , Femenino , Humanos , Leucocitos Mononucleares/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Factores de Tiempo , Titanio/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo
11.
Data Brief ; 15: 821-823, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29159219

RESUMEN

This article refers to the paper "A novel method for isolation and recovery of ceramic nanoparticles and metal wear debris from serum lubricants at ultra-low wear rates" (Lal et al., 2016) [1] and describes the concentration and size distribution data of silicon nitride nanoparticles measured using nanoparticle tracking analysis (NTA). A NanoSight LM10 instrument was used to capture the video data of silicon nitride nanoparticles moving under Brownian motion in the water. The video data was then analyzed using the NanoSight NTA software. This article also describes a methodology for calculating the percentage recovery of a nanoparticle isolation process.

12.
J Biomed Mater Res B Appl Biomater ; 105(1): 46-52, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26411540

RESUMEN

The effect of kinematics, loading and centre of rotation on the wear of an unconstrained total disc replacement have been investigated using the ISO 18192-1 standard test as a baseline. Mean volumetric wear rate and surface morphological effects were reported. Changing the phasing of the flexions to create a low (but finite) amount of crossing path motion at the bearing surfaces resulted in a significant fall in wear volume. However, the rate of wear was still much larger than previously reported values under zero cross shear conditions. Reducing the load did not result in a significant change in wear rate. Moving the centre of rotation of the disc inferiorly did significantly increase wear rate. A phenomenon of debris re-attachment on the UHMWPE surface was observed and hypothesised to be due to a relatively harsh tribological operating regime in which lubricant replenishment and particle migration out of the bearing contact zone were limited. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 46-52, 2017.


Asunto(s)
Disco Intervertebral , Vértebras Lumbares , Polietilenos/química , Reeemplazo Total de Disco , Animales , Humanos , Resistencia al Corte
13.
Mater Sci Eng C Mater Biol Appl ; 62: 497-505, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26952452

RESUMEN

In this study, the dissolution rate of SiNx coatings was investigated as a function of coating composition, in comparison to a cobalt chromium molybdenum alloy (CoCrMo) reference. SiNx coatings with N/Si ratios of 0.3, 0.8 and 1.1 were investigated. Electrochemical measurements were complemented with solution (inductively coupled plasma techniques) and surface analysis (vertical scanning interferometry and x-ray photoelectron spectroscopy). The dissolution rate of the SiNx coatings was evaluated to 0.2-1.4 nm/day, with a trend of lower dissolution rate with higher N/Si atomic ratio in the coating. The dissolution rates of the coatings were similar to or lower than that of CoCrMo (0.7-1.2 nm/day). The highest nitrogen containing coating showed mainly Si-N bonds in the bulk as well as at the surface and in the dissolution area. The lower nitrogen containing coatings showed Si-N and/or Si-Si bonds in the bulk and an increased formation of Si-O bonds at the surface as well as in the dissolution area. The SiNx coatings reduced the metal ion release from the substrate. The possibility to tune the dissolution rate and the ability to prevent release of metal ions encourage further studies on SiNx coatings for joint replacements.


Asunto(s)
Sustitutos de Huesos/química , Materiales Biocompatibles Revestidos/química , Compuestos de Silicona/química , Artroplastia de Reemplazo de Rodilla , Sustitutos de Huesos/metabolismo , Materiales Biocompatibles Revestidos/metabolismo , Corrosión , Técnicas Electroquímicas , Interferometría , Ensayo de Materiales , Espectroscopía de Fotoelectrones , Solubilidad , Propiedades de Superficie , Vitalio/química , Vitalio/metabolismo
14.
J Biomech ; 48(12): 3258-66, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26189096

RESUMEN

The high stiffness of bone cements used in vertebroplasty has been hypothesised to contribute to the propensity of adjacent vertebral fractures after treatment. Therefore, new low-modulus cements have been developed; however, there are currently no studies assessing the biomechanical aspects of vertebroplasty with these cements in an ex vivo non-prophylactic model. In this study, we induced wedge fractures through eccentric uniaxial compression to single whole-vertebrae, before and after augmentation with either standard or low-modulus cement. Compressive strength and stiffness of individual vertebrae were measured, on 19 samples from metastatic spines and 20 samples from elderly, osteopenic spines. While both cement types increased the strength of both the metastatic (+34% and +63% for standard and low-modulus cement, respectively) and the elderly vertebrae (+303% and +113%, respectively), none of them restored the initial stiffness of metastatic specimens (-51% and -46%, respectively). Furthermore, low-modulus cement gave a lower total stiffness (-13%) of elderly specimens whereas standard cement increased it above initial levels (+17%). Results show that vertebroplasty with low-modulus cement could provide restoration of the initial stiffness while increasing the strength of fractured elderly vertebrae and hence represent a treatment modality which is closer to pre-augmented behaviour. Also, this study indicates that stiffness-modified cement needs to be optimised for patient/pathology specific treatment.


Asunto(s)
Cementos para Huesos/química , Polimetil Metacrilato/química , Vertebroplastia/métodos , Adulto , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Fuerza Compresiva , Femenino , Humanos , Masculino , Modelos Biológicos , Radiografía , Neoplasias de la Columna Vertebral/patología , Neoplasias de la Columna Vertebral/secundario , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/patología , Columna Vertebral/fisiopatología
15.
J Mech Behav Biomed Mater ; 46: 158-67, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25792413

RESUMEN

Understanding the cement flow behaviour and accurately predicting the cement placement within the vertebral body is extremely challenging. Vertebral cancellous bone displays highly complex geometrical structures and architectural inhomogeneities over a range of length scales, thus making the scientific understanding of the cement injection behaviour difficult in clinical or cadaveric studies. Previous experimental studies on cement flow have used open-porous aluminum foam to represent osteoporotic bone. Although the porosity was well controlled, the geometrical structure of each of the foams was inherently unique. This paper presents novel methodology using customized, reproducible and pathologically representative three-dimensional bone surrogates to help study biomaterial--biofluid interaction. The aim was to provide a robust tool for comprehensive assessment of biomaterial injection behaviour through controlling the bone surrogate morphology and the injection parameters (i.e. needle gauge, needle placement, flow rate and injected volume), measuring the injection pressure, and allowing the visualization and quantitative analysis of the spreading distribution. This methodology provides a clinically relevant representation of cement flow patterns and a tool for validating computational simulations.


Asunto(s)
Materiales Biocompatibles , Cementos para Huesos , Simulación por Computador , Hidrodinámica , Ensayo de Materiales/métodos , Columna Vertebral , Análisis de Elementos Finitos , Humanos , Inyecciones , Viscosidad
16.
Spine (Phila Pa 1976) ; 40(7): 436-42, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25599285

RESUMEN

STUDY DESIGN: Descriptive. OBJECTIVE: The purpose of this study was to determine the in vivo kinematics of functional spinal units, during gait, in individuals with a single-level lumbar total disc replacement (TDR). SUMMARY OF BACKGROUND DATA: TDR is a motion preservation technology that offers an alternative to spinal fusion for treatment of degenerative disc disease. The aim of TDRs is to replicate motion of the functional spinal units, which may protect adjacent intervertebral discs against accelerated degeneration. At present, there is limited understanding of the in vivo motion of TDRs, particularly during dynamic activities such as gait. Such information is important for understanding the wear characteristics of TDRs and furthering design rationale of future implants. METHODS: TDR motions were obtained from 24 participants who underwent implantation with single-level L4-L5 or L5-S1 CHARITÉ or In Motion TDRs. Video fluoroscopy was used to obtain measurements in the frontal and sagittal planes during fixed speed treadmill walking. RESULTS: The mean range of motion between the upper and lower lumbar TDR endplates during walking was 1.6° and 2.4° in the frontal and sagittal planes, respectively. These values were significantly different from zero and corresponded to 19% of the maximum static range of motion in each plane. CONCLUSION: Lumbar TDRs provide a degree of motion preservation at the operative level during moderate speed walking. The distribution of lumbar TDR motions during walking presented here will inform relevant standards for conducting standardized tests of lumbar TDRs, particularly wear assessments, and, hence, enable more realistic mechanical and computer-based wear simulations to be performed. LEVEL OF EVIDENCE: N/A.


Asunto(s)
Fluoroscopía/métodos , Degeneración del Disco Intervertebral/cirugía , Vértebras Lumbares/cirugía , Reeemplazo Total de Disco/métodos , Grabación en Video , Caminata/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Simulación por Computador , Femenino , Estudios de Seguimiento , Marcha/fisiología , Humanos , Degeneración del Disco Intervertebral/fisiopatología , Articulaciones/fisiología , Vértebras Lumbares/fisiología , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular/fisiología , Resultado del Tratamiento
17.
J Biomater Appl ; 29(4): 582-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24913614

RESUMEN

Understanding the cement injection behaviour during vertebroplasty and accurately predicting the cement placement within the vertebral body is extremely challenging. As there is no standardized methodology, we propose a novel method using reproducible and pathologically representative flow models to study the influence of cement properties on injection behaviour. The models, confined between an upper glass window and a lower aluminium plate, were filled with bone marrow substitute and then injected (4, 6 and 8 min after cement mixing) with commercially available bone cements (SimplexP, Opacity+, OsteopalV and Parallax) at a constant flow rate (3 mL/min). A load cell was used to measure the force applied on the syringe plunger and calculate the peak pressure. A camera was used to monitor the cement flow during injection and calculate the following parameters when the cement had reached the boundary of the models: the time to reach the boundary, the filled area and the roundness. The peak pressure was comparable to that reported during clinical vertebroplasty and showed a similar increase with injection time. The study highlighted the influence of cement formulations and model structure on the injection behaviour and showed that cements with similar composition/particle size had similar flow behaviour, while the introduction of defects reduced the time to reach the boundary, the filled area and the roundness. The proposed method provides a novel tool for quick, robust differentiation between various cement formulations through the visualization and quantitative analysis of the cement spreading at various time intervals.


Asunto(s)
Cementos para Huesos , Vertebroplastia/métodos , Cementos para Huesos/química , Química Farmacéutica , Humanos , Técnicas In Vitro , Inyecciones , Ensayo de Materiales/instrumentación , Modelos Biológicos , Osteoporosis/terapia , Reología , Fracturas de la Columna Vertebral/terapia , Neoplasias de la Columna Vertebral/secundario , Neoplasias de la Columna Vertebral/terapia
18.
J Biomed Mater Res B Appl Biomater ; 102(7): 1496-505, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24604838

RESUMEN

Intervertebral total disc replacements (TDR) are used in the treatment of degenerative spinal disc disease. There are, however, concerns that they may be subject to long-term failure due to wear. The adverse effects of TDR wear have the potential to manifest in the dura mater and surrounding tissues. The aim of this study was to investigate the physiological structure of the dura mater, isolate the resident dural epithelial and stromal cells and analyse the capacity of these cells to internalise model polymer particles. The porcine dura mater was a collagen-rich structure encompassing regularly arranged fibroblastic cells within an outermost epithelial cell layer. The isolated dural epithelial cells had endothelial cell characteristics (positive for von Willebrand factor, CD31, E-cadherin and desmoplakin) and barrier functionality whereas the fibroblastic cells were positive for collagen I and III, tenascin and actin. The capacity of the dural cells to take up model particles was dependent on particle size. Nanometer sized particles readily penetrated both types of cells. However, dural fibroblasts engulfed micron-sized particles at a much higher rate than dural epithelial cells. The study suggested that dural epithelial cells may offer some barrier to the penetration of micron-sized particles but not nanometer sized particles.


Asunto(s)
Duramadre , Células Epiteliales , Fibroblastos , Nanopartículas , Animales , Duramadre/metabolismo , Duramadre/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Nanopartículas/efectos adversos , Tamaño de la Partícula , Porcinos , Reeemplazo Total de Disco/efectos adversos
19.
Spine J ; 14(9): 2164-71, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24509177

RESUMEN

BACKGROUND CONTEXT: Spinal burst fractures are a significant cause of spinal instability and neurologic impairment. Although evidence suggests that the neurologic trauma arises during the dynamic phase of fracture, the biomechanics underpinning the phenomenon has yet to be fully explained. Interpedicular widening (IPW) is a distinctive feature of the fracture but, despite the association with the occurrence of neurologic deficit, little is known about its biomechanics. PURPOSE: To provide a comprehensive in vitro study on spinal burst fracture, with special attention on the dynamics of IPW. STUDY DESIGN: Experimental measurements in combination with computed tomography scanning were used to quantitatively investigate the biomechanics of burst fracture in a cadaveric model. METHODS: Twelve human three-adjacent-vertebra segments were tested to induce burst fracture. Impact was delivered through a drop-weight tower, whereas IPW was continuously recorded by two displacement transducers. Computed tomography scanning aided quantifying canal occlusion (CO) and evaluating sample anatomy and fracture appearance. Two levels of energy were delivered to two groups: high energy (HE) and low energy (LE). RESULTS: No difference was found between HE and LE in terms of the residual IPW (ie, post-fracture), maximum IPW, or CO (median 20.2%). Whereas IPW was not found to be correlated with CO, a moderate correlation was found between the maximum and the residual IPW. At the fracture onset, IPW reached a maximum median value of 15.8% in approximately 20 to 25 milliseconds. After the transient phase, the pedicles were recoiled to a median residual IPW of 4.9%. CONCLUSIONS: Our study provides for the first time insight on how IPW actually evolves during the fracture onset. In addition, our results may help shedding more light on the mechanical initiation of the fracture.


Asunto(s)
Fracturas de la Columna Vertebral/fisiopatología , Columna Vertebral/fisiopatología , Adulto , Fenómenos Biomecánicos , Cadáver , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Radiografía , Fracturas de la Columna Vertebral/diagnóstico por imagen , Columna Vertebral/diagnóstico por imagen , Tomógrafos Computarizados por Rayos X , Transductores
20.
Clin Biomech (Bristol, Avon) ; 28(8): 860-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23953004

RESUMEN

BACKGROUND: Vertebroplasty is increasingly used in the treatment of vertebral compression fractures. However there are concerns that this intervention may lead to further fractures in the adjacent vertebral segments. This study was designed to parametrically assess the influence of both treatment factors (cement volume and number of augmentations), and patient factors (bone and disc quality) on the biomechanical effects of vertebroplasty. METHODS: Specimen-specific finite element models of two experimentally-tested human three-vertebral-segments were developed from CT-scan data. Cement augmentation at one and two levels was represented in the respective models and good agreement in the predicted stiffness was found compared to the corresponding experimental specimens. Parametric variations of key variables associated with the procedure were then studied. FINDINGS: The segmental stiffness increased with disc degeneration, with increasing bone quality and to a lesser extent with increasing cement volume. Cement modulus did not have a great influence on the overall segmental stiffness and on the change in the elemental stress in the adjoining vertebrae. However, following augmentation, the stress distribution in the adjacent vertebra changed, indicating possible load redistribution effects of vertebroplasty. INTERPRETATION: This study demonstrates the importance of patient factors in the outcomes of vertebroplasty and suggests that these may be one reason for the variation in clinical results.


Asunto(s)
Simulación por Computador , Desplazamiento del Disco Intervertebral/cirugía , Vértebras Lumbares/cirugía , Modelos Biológicos , Vértebras Torácicas/cirugía , Vertebroplastia , Anciano , Fenómenos Biomecánicos , Cementos para Huesos , Elasticidad , Femenino , Análisis de Elementos Finitos , Fracturas por Compresión/etiología , Fracturas por Compresión/prevención & control , Humanos , Técnicas In Vitro , Desplazamiento del Disco Intervertebral/complicaciones , Desplazamiento del Disco Intervertebral/fisiopatología , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/lesiones , Vértebras Lumbares/fisiopatología , Fracturas de la Columna Vertebral/etiología , Fracturas de la Columna Vertebral/prevención & control , Vértebras Torácicas/diagnóstico por imagen , Vértebras Torácicas/lesiones , Vértebras Torácicas/fisiopatología , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...