Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Clin Cancer Res ; 30(7): 1293-1306, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38277241

RESUMEN

PURPOSE: Tax-interacting protein 1 (TIP1) is a cancer-specific radiation-inducible cell surface antigen that plays a role in cancer progression and resistance to therapy. This study aimed to develop a novel anti-TIP1 human antibody for noninvasive PET imaging in patients with cancer. EXPERIMENTAL DESIGN: A phage-displayed single-chain variable fragment (scFv) library was created from healthy donors' blood. High-affinity anti-TIP1 scFvs were selected from the library and engineered to human IgG1. Purified Abs were characterized by size exclusion chromatography high-performance liquid chromatography (SEC-HPLC), native mass spectrometry (native MS), ELISA, BIAcore, and flow cytometry. The labeling of positron emitter [89Zr]Zr to the lead Ab, L111, was optimized using deferoxamine (DFO) chelator. The stability of [89Zr]Zr-DFO-L111 was assessed in human serum. Small animal PET studies were performed in lung cancer tumor models (A549 and H460). RESULTS: We obtained 95% pure L111 by SEC-HPLC. Native MS confirmed the intact mass and glycosylation pattern of L111. Conjugation of three molar equivalents of DFO led to the optimal DFO-to-L111 ratio of 1.05. Radiochemical purity of 99.9% and specific activity of 0.37 MBq/µg was obtained for [89Zr]Zr-DFO-L111. [89Zr]Zr-DFO-L111 was stable in human serum over 7 days. The immunoreactive fraction in cell surface binding studies was 96%. In PET, preinjection with 4 mg/kg cold L111 before [89Zr]Zr-DFO-L111 (7.4 MBq; 20 µg) significantly (P < 0.01) enhanced the tumor-to-muscle standard uptake values (SUVmax) ratios on day 5 compared with day 2 postinjection. CONCLUSIONS: L111 Ab targets lung cancer cells in vitro and in vivo. [89Zr]Zr-DFO-L111 is a human antibody that will be evaluated in the first in-human study of safety and PET imaging.


Asunto(s)
Neoplasias Pulmonares , Anticuerpos de Cadena Única , Animales , Humanos , Radioisótopos/química , Circonio/química , Deferoxamina/química , Tomografía de Emisión de Positrones/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Línea Celular Tumoral
2.
Biomed Pharmacother ; 166: 115341, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625322

RESUMEN

Non-small-cell lung cancer (NSCLC) and glioblastoma (GB) have poor prognoses. Discovery of new molecular targets is needed to improve therapy. Tax interacting protein 1 (TIP1), which plays a role in cancer progression, is overexpressed and radiation-inducible in NSCLC and GB. We evaluated the effect of an anti-TIP1 antibody alone and in combination with ionizing radiation (XRT) on NSCLC and GB in vitro and in vivo. NSCLC and GB cells were treated with anti-TIP1 antibodies and evaluated for proliferation, colony formation, endocytosis, and cell death. The efficacy of anti-TIP1 antibodies in combination with XRT on tumor growth was measured in mouse models of NSCLC and GB. mRNA sequencing was performed to understand the molecular mechanisms involved in the action of anti-TIP1 antibodies. We found that targeting the functional domain of TIP1 leads to endocytosis of the anti-TIP1 antibody followed by reduced proliferation and increased apoptosis-mediated cell death. Anti-TIP1 antibodies bound specifically (with high affinity) to cancer cells and synergized with XRT to significantly increase cytotoxicity in vitro and reduce tumor growth in mouse models of NSCLC and GB. Importantly, downregulation of cancer survival signaling pathways was found in vitro and in vivo following treatment with anti-TIP1 antibodies. TIP1 is a new therapeutic target for cancer treatment. Antibodies targeting the functional domain of TIP1 exhibited antitumor activity and enhanced the efficacy of radiation both in vitro and in vivo. Anti-TIP1 antibodies interrupt TIP1 function and are effective cancer therapy alone or in combination with XRT in mouse models of human cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Glioblastoma , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Anticuerpos/farmacología , Anticuerpos/uso terapéutico , Paclitaxel , Modelos Animales de Enfermedad
3.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35328459

RESUMEN

Therapeutic antibodies used to treat cancer are effective in patients with advanced-stage disease. For example, antibodies that activate T-lymphocytes improve survival in many cancer subtypes. In addition, antibody-drug conjugates effectively target cytotoxic agents that are specific to cancer. This review discusses radiation-inducible antigens, which are stress-regulated proteins that are over-expressed in cancer. These inducible cell surface proteins become accessible to antibody binding during the cellular response to genotoxic stress. The lead antigens are induced in all histologic subtypes and nearly all advanced-stage cancers, but show little to no expression in normal tissues. Inducible antigens are exploited by using therapeutic antibodies that bind specifically to these stress-regulated proteins. Antibodies that bind to the inducible antigens GRP78 and TIP1 enhance the efficacy of radiotherapy in preclinical cancer models. The conjugation of cytotoxic drugs to the antibodies further improves cancer response. This review focuses on the use of radiotherapy to control the cancer-specific binding of therapeutic antibodies and antibody-drug conjugates.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/radioterapia
4.
Clin Cancer Res ; 27(11): 3224-3233, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074654

RESUMEN

PURPOSE: We recently discovered that anti-TIP1 antibody activates endocytosis in cancer cells, which facilitates retention of antibody and dissociation of a conjugated drug. To improve the pharmacokinetics and cancer specificity of radiosensitizing drugs, we utilized antibody-drug conjugates (ADCs) that bind specifically to radiation-inducible antigen, TIP1, on non-small cell lung cancer (NSCLC). This approach exploits the long circulation time of antibodies to deliver a radiosensitizing drug to cancer each day during radiotherapy. EXPERIMENTAL DESIGN: Antibodies to TIP1 were prioritized based on affinity, cancer-specific binding, and internalization. The lead antibody, 7H5, was conjugated with a cytotoxic drug MMAE because of its ability to radiosensitize cancer. Cytotoxicity, colony formation, and tumor growth studies were performed with 7H5-VcMMAE in combination with radiation. RESULTS: 7H5 showed a high affinity to recombinant TIP1 protein and radiation-inducible TIP1 on the cancer cell surface. 7H5 undergoes endocytosis in NSCLC cells in vitro. We obtained an average drug-to-antibody ratio (DAR) of 4.25 for 7H5-VcMMAE. A 70% reduction in viable cells was observed following 7H5-VcMMAE treatment compared with 7H5 alone in both A549 and H1299 cells. 7H5-VcMMAE sensitized NSCLC cells to radiation, thereby significantly decreasing the surviving fraction. The ADC combined with radiation showed a prolonged delay in tumor growth and improved survival in A549 and H1299 tumor models. CONCLUSIONS: Targeting radiation-inducible TIP1 with a radiosensitizing ADC is a promising strategy to enhance the therapeutic efficacy of NSCLC. This novel approach of targeting with ADCs to radiation-inducible antigens will lead to clinical trials in lung cancer patients treated with radiotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Inmunoconjugados/uso terapéutico , Neoplasias Pulmonares/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Células A549 , Antineoplásicos/farmacocinética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Terapia Combinada , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunoconjugados/farmacocinética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología
5.
Int J Radiat Oncol Biol Phys ; 110(3): 918-919, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089690
6.
Int J Hyperthermia ; 38(1): 498-510, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33757406

RESUMEN

PURPOSE: To evaluate the targetability of late-stage cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced hyperthermia (HT) as an adjuvant to radiation therapy (RT). METHODS: Seventy-nine cervical cancer patients (stage IIIB-IVA) who received RT with lesions visible on positron emission tomography-computed tomography (PET-CT) were retrospectively analyzed for targetability using a commercially-available HT-capable MRgHIFU system. Targetability was assessed for both primary targets and/or any metastatic lymph nodes using both posterior (supine) and anterior (prone) patient setups relative to the transducer. Thirty-four different angles of rotation along subjects' longitudinal axis were analyzed. Targetability was categorized as: (1) Targetable with/without minimal intervention; (2) Not targetable. To determine if any factors could be used for prospective screening of patients, potential associations between demographic/anatomical factors and targetability were analyzed. RESULTS: 72.15% primary tumors and 33.96% metastatic lymph nodes were targetable from at least one angle. 49.37% and 39.24% of primary tumors could be targeted with patient laying in supine and prone positions, respectively. 25°-30° rotation and 0° rotation had the highest rate of the posterior and anterior targetability, respectively. The ventral depth of the tumor and its distance to the coccyx were statistically correlated with the anterior and posterior targetability, respectively. CONCLUSION: Most late-stage cervical cancer primaries were targetable by MRgHIFU HT requiring either no/minimal intervention. A rotation of 0° or 25°-30° relative to the transducer might benefit anterior and posterior targetability, respectively. Certain demographic/anatomic parameters might be useful in screening patients for treatability.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Neoplasias del Cuello Uterino , Femenino , Humanos , Hipertermia , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Prospectivos , Estudios Retrospectivos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/radioterapia
7.
Nat Commun ; 11(1): 6037, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247158

RESUMEN

Drug resistance and dose-limiting toxicities are significant barriers for treatment of multiple myeloma (MM). Bone marrow microenvironment (BMME) plays a major role in drug resistance in MM. Drug delivery with targeted nanoparticles have been shown to improve specificity and efficacy and reduce toxicity. We aim to improve treatments for MM by (1) using nanoparticle delivery to enhance efficacy and reduce toxicity; (2) targeting the tumor-associated endothelium for specific delivery of the cargo to the tumor area, and (3) synchronizing the delivery of chemotherapy (bortezomib; BTZ) and BMME-disrupting agents (ROCK inhibitor) to overcome BMME-induced drug resistance. We find that targeting the BMME with P-selectin glycoprotein ligand-1 (PSGL-1)-targeted BTZ and ROCK inhibitor-loaded liposomes is more effective than free drugs, non-targeted liposomes, and single-agent controls and reduces severe BTZ-associated side effects. These results support the use of PSGL-1-targeted multi-drug and even non-targeted liposomal BTZ formulations for the enhancement of patient outcome in MM.


Asunto(s)
Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Nanopartículas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Microambiente Tumoral , Quinasas Asociadas a rho/antagonistas & inhibidores , Amidas/farmacología , Amidas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Bortezomib/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Liposomas , Glicoproteínas de Membrana/metabolismo , Ratones , Selectina-P/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Piridinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Carga Tumoral , Microambiente Tumoral/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo , Familia-src Quinasas/metabolismo
8.
Int J Hyperthermia ; 37(1): 1159-1173, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33003967

RESUMEN

PURPOSE: To characterize temperature fields and tissue damage profiles of large-volume hyperthermia (HT) induced by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) in deep and superficial targets in vivo in a porcine model. METHODS: Nineteen HT sessions were performed in vivo with a commercial MRgHIFU system (Sonalleve® V2, Profound Medical Inc., Mississauga, ON, Canada) in hind leg muscles of eight pigs with temperature fields of cross-sectional diameter of 58-mm. Temperature statistics evaluated in the target region-of-interest (tROI) included accuracy, temporal variation, and uniformity. The impact of the number and location of imaging planes for feedback-based temperature control were investigated. Temperature fields were characterized by time-in-range (TIR, the duration each voxel stays within 40-45 °C) maps. Tissue damage was characterized by contrast-enhanced MRI, and macroscopic and histopathological analysis. The performance of the Sonalleve® system was benchmarked against a commercial phantom. RESULTS: Across all HT sessions, the mean difference between the average temperature (Tavg) and the desired temperature was -0.4 ± 0.5 °C; the standard deviation of temperature 1.2 ± 0.2 °C; the temporal variation of Tavg for 30-min HT was 0.6 ± 0.2 °C, and the temperature uniformity was 1.5 ± 0.2 °C. A difference of 2.2-cm (in pig) and 1.5-cm (in phantom) in TIR dimensions was observed when applying feedback-based plane(s) at different locations. Histopathology showed 62.5% of examined HT sessions presenting myofiber degeneration/necrosis within the target volume. CONCLUSION: Large-volume MRgHIFU-mediated HT was successfully implemented and characterized in a porcine model in deep and superficial targets in vivo with heating distributions modifiable by user-definable parameters.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Hipertermia , Animales , Estudios Transversales , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Porcinos
9.
Oncotarget ; 11(27): 2647-2659, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32676166

RESUMEN

Resistance to radiation therapy is a significant problem in the treatment of non-small cell lung cancer (NSCLC). There is an unmet need to discover new molecular targets for drug development in combination with standard of care cancer therapy. We found that TAF15 was radiation-inducible using phage-displayed peptide libraries. In this study, we report that overexpression of TAF15 is correlated with worsened survival in NSCLC patients. Radiation treatment led to surface induction of TAF15 in vitro and in vivo. We genetically silenced TAF15 which led to a significant reduction in proliferation of NSCLC cells. Cells depleted of TAF15 exhibited cell cycle arrest and enhanced apoptosis through activation and accumulation of p53. In combination with radiation, TAF15 knockdown led to a significant reduction in the surviving fraction of NSCLC cell lines. To determine the importance of TAF15 surface expression, we targeted TAF15 with an antibody. In combination with radiation, the anti-TAF15 antibody led to a reduction in the surviving fraction of cancer cells. These studies show that TAF15 is a radiation-inducible molecular target that is accessible to anti-cancer antibodies and enhances cell viability in response to radiation.

10.
Br J Cancer ; 123(6): 869-870, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32555364

RESUMEN

Concurrent chemo-radiotherapy is a commonly employed curative treatment approach for locally advanced cancers but is associated with considerable morbidity. Chemo-radiotherapy using proton therapy may be able to reduce side effects of treatment and improve efficacy, but this remains an area of controversy and data are relatively limited. We comment on recently published studies and discuss future directions for proton therapy.


Asunto(s)
Quimioradioterapia/métodos , Neoplasias/terapia , Terapia de Protones/métodos , Quimioradioterapia/efectos adversos , Humanos , Terapia de Protones/efectos adversos
11.
Oncotarget ; 11(19): 1681-1690, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32477458

RESUMEN

The immune system plays a vital role in cancer therapy, especially with the advent of immunotherapy. Radiation therapy induces iatrogenic immunosuppression referred to as radiation-induced lymphopenia (RIL). RIL correlates with significant decreases in the overall survival of cancer patients. Although the etiology and severity of lymphopenia are known, the mechanism(s) of RIL are largely unknown. We found that irradiation not only had direct effects on circulating lymphocytes but also had indirect effects on the spleen, thymus, and bone marrow. We found that irradiated cells traffic to the bone marrow and bring about the reduction of hematopoietic stem cells (HSC) and progenitor cells. Using mass cytometry analysis (CyTOF) of the bone marrow, we found reduced expression of CD11a, which is required for T cell proliferation and maturation. RNA Sequencing and gene set enrichment analysis of the bone marrow cells following irradiation showed down-regulation of genes involved in hematopoiesis. Identification of CD11a and hematopoietic genes involved in iatrogenic immune suppression can help identify mechanisms of RIL.

12.
Int J Hyperthermia ; 36(1): 1147-1159, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31752562

RESUMEN

Purpose: To evaluate the feasibility and assess safety parameters of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT; heating to 40-45 °C) in various pelvic targets in a porcine model in vivo.Methods: Thirteen HT treatments were performed in six pigs with a commercial MRgHIFU system (Sonalleve V2, Profound Medical Inc., Mississauga, Canada) to muscle adjacent to the ventral/dorsal bladder wall and uterus to administer 42 °C (±1°) for 30 min (±5%) using an 18-mm target diameter and 100 W power. Feasibility was assessed using accuracy, uniformity, and MR-thermometry performance-based metrics. Safety parameters were assessed for tissues in the targets and beam-path by contrast-enhanced MRI, gross-pathology and histopathology.Results: Across all HT sessions, the mean difference between average temperature (Tavg) and the target temperature within the target region-of-interest (tROI, the cross-section of the heated volume at focal depth) was 0.51 ± 0.33 °C. Within the tROI, the temperature standard deviation averaged 1.55 ± 0.31 °C, the average 30-min Tavg variation was 0.80 ± 0.17 °C, and the maximum difference between Tavg and the 10th- or 90th-percentile temperature averaged 2.01 ± 0.44 °C. The average time to reach ≥41 °C and cool to ≤40 °C within the tROI at the beginning and end of treatment was 47.25 ± 27.47 s and 66.37 ± 62.68 s, respectively. Compared to unheated controls, no abnormally-perfused tissue or permanent damage was evident in the MR images, gross pathology or histological analysis.Conclusions: MRgHIFU-mediated HT is feasible and safety assessment is satisfactory for treating an array of clinically-mimicking pelvic geometries in a porcine model in vivo, implying the technique may have utility in treating pelvic targets in human patients.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Pelvis/patología , Animales , Estudios de Factibilidad , Fiebre , Humanos , Porcinos
13.
Ultrasound Med Biol ; 45(5): 1025-1043, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30773377

RESUMEN

Hyperthermia therapy (HT) raises tissue temperature to 40-45°C for up to 60 min. Hyperthermia is one of the most potent sensitizers of radiation therapy (RT). Ultrasound-mediated HT for radiosensitization has been used clinically since the 1960s. Recently, magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU), which has been approved by the United States Food and Drug Administration for thermal ablation therapy, has been adapted for HT. With emerging clinical trials using MRgHIFU HT for radiosensitization, there is a pressing need to review the ultrasound HT technology. The objective of this review is to overview existing HT technology, summarize available ultrasound HT devices, evaluate clinical studies combining ultrasound HT with RT and discuss challenges and future directions.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Hipertermia Inducida/métodos , Neoplasias/terapia , Tolerancia a Radiación , Humanos , Imagen por Resonancia Magnética Intervencional , Ultrasonografía
14.
J Control Release ; 298: 194-201, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30763622

RESUMEN

Targeted molecular imaging allows specific visualization and monitoring of tumors. Cancer-specific peptides have been developed for imaging and therapy. Peptides that specifically target cancer have several advantages including, ease of synthesis, low antigenicity, and enhanced diffusion into tissues. We developed the HVGGSSV peptide as a molecular targeting/imaging agent. HVGGSSV targets Tax interacting protein 1 (TIP1) which is a 14 kDa PDZ domain-containing protein that is overexpressed in cancer. We docked HVGGSSV in silico using the three-dimensional structure of TIP1 and found the binding energy was -6.0 kCal/mol. The binding affinity of HVGGSSV to TIP1 protein was found to have a KD of 3.3 × 10-6 M using surface plasmon resonance. We conjugated a 40 kDa PEG to HVGGSSV to enhance the circulation and evaluated the tumor binding in nude mice bearing heterotopic cervical (HT3), esophageal (OE33), pancreatic (BXPC3), lung (A549) and glioma (D54) tumors. NanoSPECT/CT imaging of the mice was performed 48 h and 72 h after injecting with 111Indium (111In) labeled PEG-HVGGSSV or PEG-control peptide. SPECT imaging revealed that 111In-PEG-HVGGSSV specifically bound to cervical, esophageal, pancreatic, lung and brain tumors. Post SPECT biodistribution data further validated tumor-specific binding. Overall, HVGGSSV peptide specifically binds to the major groove of the TIP1 protein surface. PEGylated-HVGGSSV could be used to target cancers that overexpress TIP1.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Péptidos/administración & dosificación , Polietilenglicoles/química , Animales , Línea Celular Tumoral , Femenino , Humanos , Radioisótopos de Indio , Ratones , Ratones Desnudos , Simulación del Acoplamiento Molecular , Imagen Molecular , Neoplasias/patología , Péptidos/química , Péptidos/metabolismo , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
15.
Circulation ; 139(3): 313-321, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30586734

RESUMEN

BACKGROUND: Case studies have suggested the efficacy of catheter-free, electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy, although prospective data are lacking. METHODS: We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electric cardiac imaging with a standard stereotactic body radiation therapy workflow followed by delivery of a single fraction of 25 Gy to the target. The primary safety end point was treatment-related serious adverse events in the first 90 days. The primary efficacy end point was any reduction in VT episodes (tracked by indwelling implantable cardioverter defibrillators) or any reduction in PVC burden (as measured by a 24-hour Holter monitor) comparing the 6 months before and after treatment (with a 6-week blanking window after treatment). Health-related quality of life was assessed using the Short Form-36 questionnaire. RESULTS: Nineteen patients were enrolled (17 for VT, 2 for PVC cardiomyopathy). Median noninvasive ablation time was 15.3 minutes (range, 5.4-32.3). In the first 90 days, 2/19 patients (10.5%) developed a treatment-related serious adverse event. The median number of VT episodes was reduced from 119 (range, 4-292) to 3 (range, 0-31; P<0.001). Reduction was observed for both implantable cardioverter defibrillator shocks and antitachycardia pacing. VT episodes or PVC burden were reduced in 17/18 evaluable patients (94%). The frequency of VT episodes or PVC burden was reduced by 75% in 89% of patients. Overall survival was 89% at 6 months and 72% at 12 months. Use of dual antiarrhythmic medications decreased from 59% to 12% ( P=0.008). Quality of life improved in 5 of 9 Short Form-36 domains at 6 months. CONCLUSIONS: Noninvasive electrophysiology-guided cardiac radioablation is associated with markedly reduced ventricular arrhythmia burden with modest short-term risks, reduction in antiarrhythmic drug use, and improvement in quality of life. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov/ . Unique identifier: NCT02919618.


Asunto(s)
Potenciales de Acción , Técnicas Electrofisiológicas Cardíacas , Ventrículos Cardíacos/efectos de la radiación , Ablación por Radiofrecuencia/métodos , Radiocirugia/métodos , Taquicardia Ventricular/radioterapia , Complejos Prematuros Ventriculares/radioterapia , Anciano , Anciano de 80 o más Años , Antiarrítmicos/uso terapéutico , Femenino , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Missouri , Valor Predictivo de las Pruebas , Estudios Prospectivos , Calidad de Vida , Ablación por Radiofrecuencia/efectos adversos , Radiocirugia/efectos adversos , Recurrencia , Factores de Riesgo , Encuestas y Cuestionarios , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatología , Factores de Tiempo , Resultado del Tratamiento , Complejos Prematuros Ventriculares/diagnóstico , Complejos Prematuros Ventriculares/fisiopatología
16.
Cell Death Discov ; 4: 117, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30588339

RESUMEN

Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.

17.
J Ther Ultrasound ; 6: 5, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29988649

RESUMEN

BACKGROUND: With the expanding applications of magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU), there is an urgent need for a convenient, reliable, and fast acoustic pressure field measurement method to aid treatment protocol design, ensure consistent and safe operation of the transducer, and facilitate regulatory approval of new techniques. Herein, we report a method for acoustic pressure field characterization of MR-HIFU systems with multi-element phased array transducers. This method integrates fiber-optic hydrophone measurements and electronic steering of the ultrasound beam with MRI-assisted HIFU focus alignment to the fiber tip. METHODS: A clinical MR-HIFU system (Sonalleve V2, Profound Medical Inc., Mississauga, Canada) was used to assess the proposed method. A fiber-optic hydrophone was submerged in a degassed water bath, and the fiber tip location was traced using MRI. Subsequently, the nominal transducer focal point indicated on the MR-HIFU therapy planning software was positioned at the fiber tip, and the HIFU focus was electronically steered around the fiber tip within a 3D volume for 3D pressure field mapping, eliminating the need for an additional, expensive, and MRI-compatible 3D positioning stage. The peak positive and negative pressures were measured at the focus and validated using a standard hydrophone measurement setup outside the MRI magnet room. RESULTS: We found that the initial MRI-assisted HIFU focus alignment had an average offset of 2.23 ± 1.33 mm from the fiber tip as identified by the 3D pressure field mapping. MRI guidance and electronic beam steering allowed 3D focus localization within ~ 1 h, i.e., faster than the typical time required using the standard laboratory setup (~ 3-4 h). Acoustic pressures measured using the proposed method were not significantly different from those obtained with the standard laboratory hydrophone measurements. CONCLUSIONS: In conclusion, our method offers a convenient, reliable, and fast acoustic pressure field characterization tool for MR-HIFU systems with phased array transducers.

18.
Mol Cancer Res ; 16(10): 1447-1453, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991528

RESUMEN

The aggressive nature and inherent therapeutic resistance of glioblastoma multiforme (GBM) has rendered the median survival of afflicted patients to 14 months. Therefore, it is imperative to understand the molecular biology of GBM to provide new treatment options to overcome this disease. It has been demonstrated that the protein kinase R-like endoplasmic reticulum kinase (PERK) pathway is an important regulator of the endoplasmic reticulum (ER) stress response. PERK signaling has been observed in other model systems after radiation; however, less is known in the context of GBM, which is frequently treated with radiation-based therapies. To investigate the significance of PERK, we studied activation of the PERK-eIF2α-ATF4 pathway in GBM after ionizing radiation (IR). By inhibiting PERK, it was determined that ionizing radiation (IR)-induced PERK activity led to eIF2α phosphorylation. IR enhanced the prodeath component of PERK signaling in cells treated with Sal003, an inhibitor of phospho-eIF2α phosphatase. Mechanistically, ATF4 mediated the prosurvival activity during the radiation response. The data support the notion that induction of ER stress signaling by radiation contributes to adaptive survival mechanisms during radiotherapy. The data also support a potential role for the PERK/eIF2α/ATF4 axis in modulating cell viability in irradiated GBM.Implications: The dual function of PERK as a mediator of survival and death may be exploited to enhance the efficacy of radiation therapy.Visual Overview: http://mcr.aacrjournals.org/content/16/10/1447/F1.large.jpg Mol Cancer Res; 16(10); 1447-53. ©2018 AACR.


Asunto(s)
Factor de Transcripción Activador 4/genética , Factor 2 Eucariótico de Iniciación/genética , Glioblastoma/radioterapia , Tolerancia a Radiación/genética , eIF-2 Quinasa/genética , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Retículo Endoplásmico/efectos de la radiación , Estrés del Retículo Endoplásmico/genética , Factor 2 Eucariótico de Iniciación/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Glioblastoma/genética , Glioblastoma/patología , Humanos , Lentivirus/genética , Fosforilación/efectos de la radiación , Radiación Ionizante , Transducción de Señal/efectos de la radiación , Transfección
19.
Cell Death Dis ; 9(5): 492, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29706648

RESUMEN

Unintended outcomes of cancer therapy include ionizing radiation (IR)-induced stem cell depletion, diminished regenerative capacity, and accelerated aging. Stem cells exhibit attenuated DNA damage response (DDR) and are hypersensitive to IR, as compared to differentiated non-stem cells. We performed genomic discovery research to compare stem cells to differentiated cells, which revealed Phosphoprotein phosphatase 2A (PP2A) as a potential contributor to susceptibility in stem cells. PP2A dephosphorylates pATM, γH2AX, pAkt etc. and is believed to play dual role in regulating DDR and apoptosis. Although studied widely in cancer cells, the role of PP2A in normal stem cell radiosensitivity is unknown. Here we demonstrate that constitutively high expression and radiation induction of PP2A in stem cells plays a role in promoting susceptibility to irradiation. Transient inhibition of PP2A markedly restores DNA repair, inhibits apoptosis, and enhances survival of stem cells, without affecting differentiated non-stem and cancer cells. PP2Ai-mediated stem cell radioprotection was demonstrated in murine embryonic, adult neural, intestinal, and hematopoietic stem cells.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Oxazoles/farmacología , Proteína Fosfatasa 2/antagonistas & inhibidores , Tolerancia a Radiación/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/efectos de la radiación , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Células Cultivadas , Reparación del ADN , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/enzimología , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/efectos de la radiación , Humanos , Masculino , Toxinas Marinas , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/enzimología , Células Madre Embrionarias de Ratones/patología , Células Madre Embrionarias de Ratones/efectos de la radiación , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/enzimología , Células-Madre Neurales/patología , Células-Madre Neurales/efectos de la radiación , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Células Madre/enzimología , Células Madre/patología , Factores de Tiempo , Técnicas de Cultivo de Tejidos
20.
Int J Radiat Oncol Biol Phys ; 101(2): 334-343, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534896

RESUMEN

PURPOSE: To analyze the incidence of and risk factors for clinically significant radiation necrosis (cRN) in adult cranial oligodendrogliomas and astrocytomas treated with proton or photon therapy. METHODS AND MATERIALS: Between 2007 and 2015, 160 patients with grade 2 or 3 oligodendrogliomas (with 1p/19q codeletion, n = 53) or astrocytomas (without 1p/19q codeletion, n = 107) were treated with proton (n = 37) or photon (n = 123) therapy. Clinically significant radiation necrosis (RN) was defined as symptomatic RN or asymptomatic RN that resulted in surgery or bevacizumab administration. The cumulative incidence was calculated using competing risks. Risk factors were identified using Cox proportional hazards. RESULTS: After a median follow-up period of 28.5 months, cRN developed in 18 patients (proton, 6; photon, 12). The 2-year cumulative incidence of cRN for proton and photon therapy was 18.7% (95% confidence interval [CI], 7.5%-33.8%) and 9.7% (95% CI, 5.1%-16%), respectively (P = .16). On multivariate analysis, risk factors for cRN included oligodendroglioma (hazard ratio [HR], 3.57; 95% CI, 1.38-9.25; P = .009) and higher prescription dose (in gray relative biological equivalents [GyRBE]) (HR, 1.30; 95% CI, 1.05-1.61; P = .015). The 2-year cumulative incidence of cRN in oligodendrogliomas and astrocytomas was 24.2% and 6.2%, respectively (P = .01). The relative volume (percentage) of brain receiving 60 GyRBE was a significant dosimetric predictor of cRN in oligodendrogliomas (HR, 1.11; 95% CI, 1.03-1.20; P = .005). CONCLUSIONS: The study showed that 1p/19q codeleted oligodendroglioma was a significant risk factor associated with cRN and the relative volume (percentage) of brain receiving 60 GyRBE was an important dosimetric predictor of cRN for oligodendroglioma patients. There is insufficient evidence at this time to conclude a significant difference in the incidence of cRN between proton and photon therapy.


Asunto(s)
Astrocitoma/radioterapia , Neoplasias Encefálicas/radioterapia , Encéfalo/efectos de la radiación , Oligodendroglioma/radioterapia , Fotones/efectos adversos , Terapia de Protones/efectos adversos , Traumatismos por Radiación/epidemiología , Adulto , Anciano , Antineoplásicos/uso terapéutico , Astrocitoma/genética , Astrocitoma/patología , Astrocitoma/terapia , Bevacizumab/uso terapéutico , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Deleción Cromosómica , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 19/genética , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Necrosis , Oligodendroglioma/genética , Oligodendroglioma/patología , Oligodendroglioma/terapia , Fotones/uso terapéutico , Modelos de Riesgos Proporcionales , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/cirugía , Dosificación Radioterapéutica , Estudios Retrospectivos , Factores de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...