Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5664, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969660

RESUMEN

Mitochondrial gene expression relies on mitoribosomes to translate mitochondrial mRNAs. The biogenesis of mitoribosomes is an intricate process involving multiple assembly factors. Among these factors, GTP-binding proteins (GTPBPs) play important roles. In bacterial systems, numerous GTPBPs are required for ribosome subunit maturation, with EngB being a GTPBP involved in the ribosomal large subunit assembly. In this study, we focus on exploring the function of GTPBP8, the human homolog of EngB. We find that ablation of GTPBP8 leads to the inhibition of mitochondrial translation, resulting in significant impairment of oxidative phosphorylation. Structural analysis of mitoribosomes from GTPBP8 knock-out cells shows the accumulation of mitoribosomal large subunit assembly intermediates that are incapable of forming functional monosomes. Furthermore, fPAR-CLIP analysis reveals that GTPBP8 is an RNA-binding protein that interacts specifically with the mitochondrial ribosome large subunit 16 S rRNA. Our study highlights the role of GTPBP8 as a component of the mitochondrial gene expression machinery involved in mitochondrial large subunit maturation.


Asunto(s)
Proteínas de Unión al GTP , Mitocondrias , Ribosomas Mitocondriales , Fosforilación Oxidativa , Humanos , Ribosomas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Células HEK293 , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Mensajero/genética , Células HeLa
2.
Nucleic Acids Res ; 52(12): 7292-7304, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38806233

RESUMEN

Herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, replicates using seven essential proteins encoded by its genome. Among these, the UL30 DNA polymerase, complexed with the UL42 processivity factor, orchestrates leading and lagging strand replication of the 152 kb viral genome. UL30 polymerase is a prime target for antiviral therapy, and resistance to current drugs can arise in immunocompromised individuals. Using electron cryo-microscopy (cryo-EM), we unveil the dynamic changes of the UL30/UL42 complex with DNA in three distinct states. First, a pre-translocation state with an open fingers domain ready for nucleotide incorporation. Second, a halted elongation state where the fingers close, trapping dATP in the dNTP pocket. Third, a DNA-editing state involving significant conformational changes to allow DNA realignment for exonuclease activity. Additionally, the flexible UL30 C-terminal domain interacts with UL42, forming an extended positively charged surface binding to DNA, thereby enhancing processive synthesis. These findings highlight substantial structural shifts in the polymerase and its DNA interactions during replication, offering insights for future antiviral drug development.


Asunto(s)
Microscopía por Crioelectrón , ADN Viral , ADN Polimerasa Dirigida por ADN , Herpesvirus Humano 1 , Proteínas Virales , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/ultraestructura , Herpesvirus Humano 1/enzimología , Herpesvirus Humano 1/genética , ADN Viral/metabolismo , ADN Viral/biosíntesis , Replicación del ADN , Holoenzimas/química , Holoenzimas/metabolismo , Modelos Moleculares , Replicación Viral , Unión Proteica , Exodesoxirribonucleasas
3.
Cell Rep Med ; 5(6): 101577, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761799

RESUMEN

Descendants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant now account for almost all SARS-CoV-2 infections. The Omicron variant and its sublineages have spike glycoproteins that are highly diverged from the pandemic founder and first-generation vaccine strain, resulting in significant evasion from monoclonal antibody therapeutics and vaccines. Understanding how commonly elicited antibodies can broaden to cross-neutralize escape variants is crucial. We isolate IGHV3-53, using "public" monoclonal antibodies (mAbs) from an individual 7 months post infection with the ancestral virus and identify antibodies that exhibit potent and broad cross-neutralization, extending to the BA.1, BA.2, and BA.4/BA.5 sublineages of Omicron. Deep mutational scanning reveals these mAbs' high resistance to viral escape. Structural analysis via cryoelectron microscopy of a representative broadly neutralizing antibody, CAB-A17, in complex with the Omicron BA.1 spike highlights the structural underpinnings of this broad neutralization. By reintroducing somatic hypermutations into a germline-reverted CAB-A17, we delineate the role of affinity maturation in the development of cross-neutralization by a public class of antibodies.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , Humanos , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Reacciones Cruzadas/inmunología , Microscopía por Crioelectrón , Pruebas de Neutralización
4.
J Mol Biol ; 436(9): 168547, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508304

RESUMEN

Plant C-glycosylated aromatic polyketides are important for plant and animal health. These are specialized metabolites that perform functions both within the plant, and in interaction with soil or intestinal microbes. Despite the importance of these plant compounds, there is still limited knowledge of how they are metabolized. The Gram-positive aerobic soil bacterium Deinococcus aerius strain TR0125 and other Deinococcus species thrive in a wide range of harsh environments. In this work, we identified a C-glycoside deglycosylation gene cluster in the genome of D. aerius. The cluster includes three genes coding for a GMC-type oxidoreductase (DaCGO1) that oxidizes the glucosyl C3 position in aromatic C-glucosyl compounds, which in turn provides the substrate for the C-glycoside deglycosidase (DaCGD; composed of α+ß subunits) that cleaves the glucosyl-aglycone C-C bond. Our results from size-exclusion chromatography, single particle cryo-electron microscopy and X-ray crystallography show that DaCGD is an α2ß2 heterotetramer, which represents a novel oligomeric state among bacterial CGDs. Importantly, the high-resolution X-ray structure of DaCGD provides valuable insights into the activation of the catalytic hydroxide ion by Lys261. DaCGO1 is specific for the 6-C-glucosyl flavones isovitexin, isoorientin and the 2-C-glucosyl xanthonoid mangiferin, and the subsequent C-C-bond cleavage by DaCGD generated apigenin, luteolin and norathyriol, respectively. Of the substrates tested, isovitexin was the preferred substrate (DaCGO1, Km 0.047 mM, kcat 51 min-1; DaCGO1/DaCGD, Km 0.083 mM, kcat 0.42 min-1).


Asunto(s)
Proteínas Bacterianas , Deinococcus , Flavonoides , Genes Bacterianos , Familia de Multigenes , Xantonas , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Deinococcus/genética , Deinococcus/metabolismo , Flavonoides/metabolismo , Flavonoides/química , Glicósidos/metabolismo , Glicósidos/química , Glicosilación , Modelos Moleculares , Xantonas/metabolismo , Xantonas/química
5.
J Am Chem Soc ; 145(19): 10659-10668, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37145883

RESUMEN

Liquid-liquid phase separation (LLPS) of heterogeneous ribonucleoproteins (hnRNPs) drives the formation of membraneless organelles, but structural information about their assembled states is still lacking. Here, we address this challenge through a combination of protein engineering, native ion mobility mass spectrometry, and molecular dynamics simulations. We used an LLPS-compatible spider silk domain and pH changes to control the self-assembly of the hnRNPs FUS, TDP-43, and hCPEB3, which are implicated in neurodegeneration, cancer, and memory storage. By releasing the proteins inside the mass spectrometer from their native assemblies, we could monitor conformational changes associated with liquid-liquid phase separation. We find that FUS monomers undergo an unfolded-to-globular transition, whereas TDP-43 oligomerizes into partially disordered dimers and trimers. hCPEB3, on the other hand, remains fully disordered with a preference for fibrillar aggregation over LLPS. The divergent assembly mechanisms revealed by ion mobility mass spectrometry of soluble protein species that exist under LLPS conditions suggest structurally distinct complexes inside liquid droplets that may impact RNA processing and translation depending on biological context.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Unión al ARN , Proteínas de Unión al ADN/química , Espectrometría de Masas
6.
PNAS Nexus ; 2(2): pgac303, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36743470

RESUMEN

How the self-assembly of partially disordered proteins generates functional compartments in the cytoplasm and particularly in the nucleus is poorly understood. Nucleophosmin 1 (NPM1) is an abundant nucleolar protein that forms large oligomers and undergoes liquid-liquid phase separation by binding RNA or ribosomal proteins. It provides the scaffold for ribosome assembly but also prevents protein aggregation as part of the cellular stress response. Here, we use aggregation assays and native mass spectrometry (MS) to examine the relationship between the self-assembly and chaperone activity of NPM1. We find that oligomerization of full-length NPM1 modulates its ability to retard amyloid formation in vitro. Machine learning-based structure prediction and cryo-electron microscopy reveal fuzzy interactions between the acidic disordered region and the C-terminal nucleotide-binding domain, which cross-link NPM1 pentamers into partially disordered oligomers. The addition of basic peptides results in a tighter association within the oligomers, reducing their capacity to prevent amyloid formation. Together, our findings show that NPM1 uses a "grappling hook" mechanism to form a network-like structure that traps aggregation-prone proteins. Nucleolar proteins and RNAs simultaneously modulate the association strength and chaperone activity, suggesting a mechanism by which nucleolar composition regulates the chaperone activity of NPM1.

7.
Immunity ; 56(1): 193-206.e7, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36574772

RESUMEN

The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , COVID-19/genética , Anticuerpos Antivirales , Polimorfismo Genético , Anticuerpos Neutralizantes , Células Germinativas
8.
Cell ; 185(13): 2309-2323.e24, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35662414

RESUMEN

The mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells. Using cryo-EM, we show that POLRMT dimerization is induced by interactions with 7S RNA. The resulting POLRMT dimer interface sequesters domains necessary for promoter recognition and unwinding, thereby preventing transcription initiation. We propose that the non-coding 7S RNA molecule is a component of a negative feedback loop that regulates mitochondrial transcription in mammalian cells.


Asunto(s)
ADN Mitocondrial , Proteínas Mitocondriales , Animales , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Dimerización , Humanos , Mamíferos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ARN/metabolismo , ARN Mitocondrial , ARN Citoplasmático Pequeño , Partícula de Reconocimiento de Señal , Transcripción Genética
9.
Nat Commun ; 13(1): 155, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013189

RESUMEN

Antibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we describe the isolation of a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer-dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the beta and delta variants, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the beta variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes an uncommon strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Biespecíficos/metabolismo , COVID-19/virología , Chlorocebus aethiops , Microscopía por Crioelectrón , Células HEK293 , Humanos , Ratones Transgénicos , Pruebas de Neutralización/métodos , Unión Proteica , Conformación Proteica , Multimerización de Proteína/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
10.
Nat Commun ; 12(1): 3673, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135318

RESUMEN

Mitochondrial ribosomes (mitoribosomes) synthesize a critical set of proteins essential for oxidative phosphorylation. Therefore, mitoribosomal function is vital to the cellular energy supply. Mitoribosome biogenesis follows distinct molecular pathways that remain poorly understood. Here, we determine the cryo-EM structures of mitoribosomes isolated from human cell lines with either depleted or overexpressed mitoribosome assembly factor GTPBP5, allowing us to capture consecutive steps during mitoribosomal large subunit (mt-LSU) biogenesis. Our structures provide essential insights into the last steps of 16S rRNA folding, methylation and peptidyl transferase centre (PTC) completion, which require the coordinated action of nine assembly factors. We show that mammalian-specific MTERF4 contributes to the folding of 16S rRNA, allowing 16 S rRNA methylation by MRM2, while GTPBP5 and NSUN4 promote fine-tuning rRNA rearrangements leading to PTC formation. Moreover, our data reveal an unexpected involvement of the elongation factor mtEF-Tu in mt-LSU assembly, where mtEF-Tu interacts with GTPBP5, similar to its interaction with tRNA during translational elongation.


Asunto(s)
Ribosomas Mitocondriales/química , Subunidades Ribosómicas Grandes/química , Línea Celular , Microscopía por Crioelectrón , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Unión Proteica , Pliegue del ARN , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
11.
Science ; 371(6530)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436526

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread, with devastating consequences. For passive immunization efforts, nanobodies have size and cost advantages over conventional antibodies. In this study, we generated four neutralizing nanobodies that target the receptor binding domain of the SARS-CoV-2 spike protein. We used x-ray crystallography and cryo-electron microscopy to define two distinct binding epitopes. On the basis of these structures, we engineered multivalent nanobodies with more than 100 times the neutralizing activity of monovalent nanobodies. Biparatopic nanobody fusions suppressed the emergence of escape mutants. Several nanobody constructs neutralized through receptor binding competition, whereas other monovalent and biparatopic nanobodies triggered aberrant activation of the spike fusion machinery. These premature conformational changes in the spike protein forestalled productive fusion and rendered the virions noninfectious.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos , Antígenos Virales/inmunología , Sitios de Unión de Anticuerpos , COVID-19/virología , Línea Celular , Microscopía por Crioelectrón , Epítopos , Humanos , Fusión de Membrana , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptores de Coronavirus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Replicación Viral
12.
Nat Commun ; 11(1): 5588, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149112

RESUMEN

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the 'up' ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/prevención & control , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19 , Microscopía por Crioelectrón , Humanos , Pruebas de Neutralización , Unión Proteica , Conformación Proteica , Dominios Proteicos/inmunología , Receptores Virales/metabolismo , SARS-CoV-2
13.
Genetics ; 216(4): 1009-1022, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33033113

RESUMEN

Double-strand breaks that are induced postreplication trigger establishment of damage-induced cohesion in Saccharomyces cerevisiae, locally at the break site and genome-wide on undamaged chromosomes. The translesion synthesis polymerase, polymerase η, is required for generation of damage-induced cohesion genome-wide. However, its precise role and regulation in this process is unclear. Here, we investigated the possibility that the cyclin-dependent kinase Cdc28 and the acetyltransferase Eco1 modulate polymerase η activity. Through in vitro phosphorylation and structure modeling, we showed that polymerase η is an attractive substrate for Cdc28 Mutation of the putative Cdc28-phosphorylation site Ser14 to Ala not only affected polymerase η protein level, but also prevented generation of damage-induced cohesion in vivo We also demonstrated that Eco1 acetylated polymerase η in vitro Certain nonacetylatable polymerase η mutants showed reduced protein level, deficient nuclear accumulation, and increased ultraviolet irradiation sensitivity. In addition, we found that both Eco1 and subunits of the cohesin network are required for cell survival after ultraviolet irradiation. Our findings support functionally important Cdc28-mediated phosphorylation, as well as post-translational modifications of multiple lysine residues that modulate polymerase η activity, and provide new insights into understanding the regulation of polymerase η for damage-induced cohesion.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Procesamiento Proteico-Postraduccional , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nat Commun ; 11(1): 4420, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887876

RESUMEN

SARS-CoV-2 enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here, we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. Ty1 binds the RBD with high affinity, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the 'up' and 'down' conformations, sterically hindering RBD-ACE2 binding. While fusion to an Fc domain renders Ty1 extremely potent, Ty1 neutralizes SARS-CoV-2 spike pseudovirus as a 12.8 kDa nanobody, which can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Betacoronavirus/efectos de los fármacos , Camélidos del Nuevo Mundo/inmunología , Infecciones por Coronavirus/tratamiento farmacológico , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/tratamiento farmacológico , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Microscopía por Crioelectrón , Epítopos/inmunología , Epítopos/metabolismo , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Pandemias , Peptidil-Dipeptidasa A/química , Neumonía Viral/virología , Unión Proteica , SARS-CoV-2 , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
15.
Nucleic Acids Res ; 45(21): 12469-12480, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040705

RESUMEN

Mitochondrial polycistronic transcripts are extensively processed to give rise to functional mRNAs, rRNAs and tRNAs; starting with the release of tRNA elements through 5'-processing by RNase P (MRPP1/2/3-complex) and 3'-processing by RNase Z (ELAC2). Here, we show using in vitro experiments that MRPP1/2 is not only a component of the mitochondrial RNase P but that it retains the tRNA product from the 5'-processing step and significantly enhances the efficiency of ELAC2-catalyzed 3'-processing for 17 of the 22 tRNAs encoded in the human mitochondrial genome. Furthermore, MRPP1/2 retains the tRNA product after ELAC2 processing and presents the nascent tRNA to the mitochondrial CCA-adding enzyme. Thus, in addition to being an essential component of the RNase P reaction, MRPP1/2 serves as a processing platform for several down-stream tRNA maturation steps in human mitochondria. These findings are of fundamental importance for our molecular understanding of disease-related mutations in MRPP1/2, ELAC2 and mitochondrial tRNA genes.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Metiltransferasas/metabolismo , Mitocondrias/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Ribonucleasa P/metabolismo , Humanos , Mitocondrias/enzimología , Proteínas de Neoplasias/metabolismo
16.
Sci Rep ; 7: 46370, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28397834

RESUMEN

TGF-ß signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-ß signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-ß signaling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transducción de Señal/fisiología
17.
Nucleic Acids Res ; 43(18): 9065-75, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26319014

RESUMEN

Polyadenylation, performed by poly(A) polymerases (PAPs), is a ubiquitous post-transcriptional modification that plays key roles in multiple aspects of RNA metabolism. Although cytoplasmic and nuclear PAPs have been studied extensively, the mechanism by which mitochondrial PAP (mtPAP) selects adenosine triphosphate over other nucleotides is unknown. Furthermore, mtPAP is unique because it acts as a dimer. However, mtPAP's dimerization requirement remains enigmatic. Here, we show the structural basis for mtPAP's nucleotide selectivity, dimerization and catalysis. Our structures reveal an intricate dimerization interface that features an RNA-recognition module formed through strand complementation. Further, we propose the structural basis for the N478D mutation that drastically reduces the length of poly(A) tails on mitochondrial mRNAs in patients with spastic ataxia 4 (SPAX4), a severe and progressive neurodegenerative disease.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Proteínas Mitocondriales/química , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Animales , Sitios de Unión , Pollos , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Dimerización , Humanos , Discapacidad Intelectual/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Espasticidad Muscular/genética , Mutación , Nucleótidos/química , Nucleótidos/metabolismo , Nucleotidiltransferasas/química , Atrofia Óptica/genética , Fenotipo , ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Ataxias Espinocerebelosas/genética
18.
Nat Commun ; 6: 7542, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26151670

RESUMEN

A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.


Asunto(s)
Deshidrogenasas de Carbohidratos/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Hongos/enzimología , Conformación de Carbohidratos , Deshidrogenasas de Carbohidratos/genética , Dominio Catalítico , Clonación Molecular , Flavina-Adenina Dinucleótido/metabolismo , Proteínas Fúngicas/genética , Hongos/genética , Hongos/metabolismo , Hemo/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica
19.
Nucleic Acids Res ; 43(11): 5664-72, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-25953853

RESUMEN

Mitochondrial RNA polymerase produces long polycistronic precursors that contain the mRNAs, rRNAs and tRNAs needed for mitochondrial translation. Mitochondrial RNase P (mt-RNase P) initiates the maturation of the precursors by cleaving at the 5' ends of the tRNAs. Human mt-RNase P is only active as a tripartite complex (mitochondrial RNase P proteins 1-3; MRPP1-3), whereas plant and trypanosomal RNase Ps (PRORPs)-albeit homologous to MRPP3-are active as single proteins. The reason for this discrepancy has so far remained obscure. Here, we present the crystal structure of human MRPP3, which features a remarkably distorted and hence non-productive active site that we propose will switch to a fully productive state only upon association with MRPP1, MRPP2 and pre-tRNA substrate. We suggest a mechanism in which MRPP1 and MRPP2 both deliver the pre-tRNA substrate and activate MRPP3 through an induced-fit process.


Asunto(s)
Ribonucleasa P/química , Proteínas de Arabidopsis/química , Dominio Catalítico , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína , Subunidades de Proteína/química
20.
Nucleic Acids Res ; 43(5): 2615-24, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25690892

RESUMEN

A single-subunit RNA polymerase, POLRMT, transcribes the mitochondrial genome in human cells. Recently, a factor termed as the mitochondrial transcription elongation factor, TEFM, was shown to stimulate transcription elongation in vivo, but its effect in vitro was relatively modest. In the current work, we have isolated active TEFM in recombinant form and used a reconstituted in vitro transcription system to characterize its activities. We show that TEFM strongly promotes POLRMT processivity as it dramatically stimulates the formation of longer transcripts. TEFM also abolishes premature transcription termination at conserved sequence block II, an event that has been linked to primer formation during initiation of mtDNA synthesis. We show that POLRMT pauses at a wide range of sites in a given DNA sequence. In the absence of TEFM, this leads to termination; however, the presence of TEFM abolishes this effect and aids POLRMT in continuation of transcription. Further, we show that TEFM substantially increases the POLRMT affinity to an elongation-like DNA:RNA template. In combination with previously published in vivo observations, our data establish TEFM as an essential component of the mitochondrial transcription machinery.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , 8-Hidroxi-2'-Desoxicoguanosina , Sistema Libre de Células , ADN/genética , ADN/metabolismo , Daño del ADN , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/genética , Desoxiguanosina/metabolismo , Genoma Mitocondrial/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Modelos Genéticos , Unión Proteica , Proteínas Recombinantes/metabolismo , Moldes Genéticos , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...