Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 142(1): 267-83, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16859833

RESUMEN

Malformations of cortical development (MCD) result from abnormal neuronal positioning during corticogenesis. MCD are believed to be the morphological and perhaps physiological bases of several neurological diseases, spanning from mental retardation to autism and epilepsy. In view of the fact that during development, an appropriate blood supply is necessary to drive organogenesis in other organs, we hypothesized that vasculogenesis plays an important role in brain development and that E15 exposure in rats to the angiogenesis inhibitor thalidomide would cause postnatal MCD. Our results demonstrate that thalidomide inhibits angiogenesis in vitro at concentrations that result in significant morphological alterations in cortical and hippocampal regions of rats prenatally exposed to this vasculotoxin. Abnormal neuronal development was associated with vascular malformations and a leaky blood-brain barrier. Protein extravasation and uptake of fluorescent albumin by neurons, but not glia, was commonly associated with abnormal cortical development. Neuronal hyperexcitability was also a hallmark of these abnormal cortical regions. Our results suggest that prenatal vasculogenesis is required to support normal neuronal migration and maturation. Altering this process leads to failure of normal cerebrovascular development and may have a profound implication for CNS maturation.


Asunto(s)
Neovascularización Fisiológica/efectos de los fármacos , Malformaciones del Sistema Nervioso , Efectos Tardíos de la Exposición Prenatal , Teratógenos/toxicidad , Talidomida/toxicidad , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Aorta/citología , Western Blotting/métodos , Bovinos , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiopatología , Relación Dosis-Respuesta a Droga , Proteínas de Dominio Doblecortina , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Femenino , Inmunohistoquímica/métodos , Técnicas In Vitro , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Malformaciones del Sistema Nervioso/etiología , Malformaciones del Sistema Nervioso/patología , Malformaciones del Sistema Nervioso/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuropéptidos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley
2.
Neuroscience ; 121(3): 605-17, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14568021

RESUMEN

Multiple drug resistance occurs when cells fail to respond to chemotherapy. Although it has been established that the drug efflux protein P-glycoprotein protects the brain from xenobiotics, the mechanisms involved in the regulation of expression of multiple drug resistance genes and proteins are not fully understood. Re-entry into the cell cycle and integrity of the p53 signaling pathway have been proposed as triggers of multiple drug resistance expression in tumor cells. Whether this regulation occurs in non-tumor CNS tissue is not known. Since multiple drug resistance overexpression has been reported in glia and blood vessels from epileptic brain, we investigated the level of expression of multidrug resistance protein, multidrug resistance-associated proteins and lung resistance protein in endothelial cells and astrocytes isolated from epileptic patients or studied in situ in surgical tissue samples by double label immunocytochemistry. Reverse transcriptase-polymerase chain reaction and Western blot analyses revealed that multiple drug resistance, multidrug resistance protein, and lung resistance protein are expressed in these cells. Given that lung resistance proteins have been reported to be preferentially expressed by tumors, we investigated expression of tumor suppressor genes in epileptic cortices. The pro-apoptotic proteins p53 and p21 could not be detected in "epileptic" astrocytes, while endothelial cells from the same samples readily expressed these proteins, as did normal brain astroglia and normal endothelial cells. Other apoptotic markers were also absent in epileptic glia. Our results suggest a possible link between loss of p53 function and expression of multiple drug resistance in non-tumor CNS cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Astrocitos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adulto , Astrocitoma/metabolismo , Encéfalo/anatomía & histología , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Quimiocinas CC/metabolismo , Endotelio/metabolismo , Epilepsia/metabolismo , Femenino , Expresión Génica , Humanos , Immunoblotting/métodos , Inmunohistoquímica/métodos , Hibridación in Situ , Indoles/metabolismo , Lactante , Masculino , Microscopía Confocal , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , ARN/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Partículas Ribonucleoproteicas en Bóveda/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...