Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMJ Glob Health ; 6(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34666988

RESUMEN

BACKGROUND: Global surgery has recently gained prominence as an academic discipline within global health. Authorship inequity has been a consistent feature of global health publications, with over-representation of authors from high-income countries (HICs), and disenfranchisement of researchers from low-income and middle-income countries (LMICs). In this study, we investigated authorship demographics within recently published global surgery literature. METHODS: We performed a systematic analysis of author characteristics, including gender, seniority and institutional affiliation, for global surgery studies published between 2016 and 2020 and indexed in the PubMed database. We compared the distribution of author gender and seniority across studies related to different topics; between authors affiliated with HICs and LMICs; and across studies with different authorship networks. RESULTS: 1240 articles were included for analysis. Most authors were male (60%), affiliated only with HICs (51%) and of high seniority (55% were fully qualified specialist or generalist clinicians, Principal Investigators, or in senior leadership or management roles). The proportion of male authors increased with increasing seniority for last and middle authors. Studies related to Obstetrics and Gynaecology had similar numbers of male and female authors, whereas there were more male authors in studies related to surgery (69% male) and Anaesthesia and Critical care (65% male). Compared with HIC authors, LMIC authors had a lower proportion of female authors at every seniority grade. This gender gap among LMIC middle authors was reduced in studies where all authors were affiliated only with LMICs. CONCLUSION: Authorship disparities are evident within global surgery academia. Remedial actions to address the lack of authorship opportunities for LMIC authors and female authors are required.


Asunto(s)
Autoria , Países en Desarrollo , Demografía , Femenino , Salud Global , Humanos , Renta , Masculino
2.
Stem Cell Rev Rep ; 16(6): 1105-1120, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32789558

RESUMEN

The Primary Scarring Alopecias are characterised by the irreversible destruction and fibrosis of hair follicles, leading to permanent and often disfiguring loss of hair. The pathophysiology of these diseases is not well understood. However, follicular-fibrosis and loss of the stem-cell niche appears to be a common theme. This review explores the pathogenesis of primary scarring alopecias, asking what happens to the stem cells of the hair follicle and how they may contribute to the progression of these diseases. Bulge-resident cells are lost (leading to loss of capacity for hair growth) from the follicle either by inflammatory-mediate apoptosis or through epigenetic reprogramming to assume a mesenchymal-like identity. What proportion of bulge cells is lost to which process is unknown and probably differs depending on the individual PCA and its specific inflammatory cell infiltrate. The formation of fibroblast-like cells from follicular stem cells may also mean that the cells of the bulge have a direct role in the pathogenesis. The identification of specific cells involved in the pathogenesis of these diseases could provide unique diagnostic and therapeutic opportunities to prevent disease progression by preventing EMT and specific pro-fibrotic signals.


Asunto(s)
Alopecia/patología , Alopecia/terapia , Cicatriz/patología , Cicatriz/terapia , Nicho de Células Madre , Alopecia/inmunología , Animales , Biomarcadores/metabolismo , Cicatriz/inmunología , Fibrosis , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/patología , Humanos
3.
Transcription ; 6(1): 17-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25668203

RESUMEN

Nuclear reprogramming changes the identity of cells by changing gene expression programmes. Two recent pieces of work have highlighted the role that mitosis plays in enhancing the success of nuclear reprogramming. This Point of View article examines this work in the context of nuclear reprogramming.


Asunto(s)
Reprogramación Celular , Expresión Génica , Mitosis/genética , Animales , Cromatina/metabolismo , Humanos , Ubiquitinación
4.
PLoS Biol ; 12(7): e1001914, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25072650

RESUMEN

Cell differentiation is remarkably stable but can be reversed by somatic cell nuclear transfer, cell fusion, and iPS. Nuclear transfer to amphibian oocytes provides a special opportunity to test transcriptional reprogramming without cell division. We show here that, after nuclear transfer to amphibian oocytes, mitotic chromatin is reprogrammed up to 100 times faster than interphase nuclei. We find that, as cells traverse mitosis, their genes pass through a temporary phase of unusually high responsiveness to oocyte reprogramming factors (mitotic advantage). Mitotic advantage is not explained by nuclear penetration, DNA modifications, histone acetylation, phosphorylation, methylation, nor by salt soluble chromosomal proteins. Our results suggest that histone H2A deubiquitination may account, at least in part, for the acquisition of mitotic advantage. They support the general principle that a temporary access of cytoplasmic factors to genes during mitosis may facilitate somatic cell nuclear reprogramming and the acquisition of new cell fates in normal development.


Asunto(s)
Reprogramación Celular , Cromatina/metabolismo , Mitosis/fisiología , Transcripción Genética , Anfibios , Animales , Línea Celular , Histonas/metabolismo , Ratones , Técnicas de Transferencia Nuclear , Oocitos/metabolismo
5.
Mol Cell ; 55(4): 524-36, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25066233

RESUMEN

Nuclear transfer to oocytes is an efficient way to transcriptionally reprogram somatic nuclei, but its mechanisms remain unclear. Here, we identify a sequence of molecular events that leads to rapid transcriptional reprogramming of somatic nuclei after transplantation to Xenopus oocytes. RNA-seq analyses reveal that reprogramming by oocytes results in a selective switch in transcription toward an oocyte rather than pluripotent type, without requiring new protein synthesis. Time-course analyses at the single-nucleus level show that transcriptional reprogramming is induced in most transplanted nuclei in a highly hierarchical manner. We demonstrate that an extensive exchange of somatic- for oocyte-specific factors mediates reprogramming and leads to robust oocyte RNA polymerase II binding and phosphorylation on transplanted chromatin. Moreover, genome-wide binding of oocyte-specific linker histone B4 supports its role in transcriptional reprogramming. Thus, our study reveals the rapid, abundant, and stepwise loading of oocyte-specific factors onto somatic chromatin as important determinants for successful reprogramming.


Asunto(s)
Reprogramación Celular/genética , Cromatina/metabolismo , Histonas/fisiología , Oocitos/metabolismo , Xenopus/embriología , Animales , Células Cultivadas , Reprogramación Celular/fisiología , Genoma , Ratones , Técnicas de Transferencia Nuclear , Especificidad de Órganos , ARN/genética , Análisis de Secuencia de ARN , Xenopus/genética
6.
Nature ; 507(7490): 104-8, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24463520

RESUMEN

Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Citrulina/metabolismo , Histonas/química , Histonas/metabolismo , Células Madre Pluripotentes/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Arginina/química , Arginina/metabolismo , Sitios de Unión , Reprogramación Celular/genética , Cromatina/química , ADN/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación de la Expresión Génica , Hidrolasas/metabolismo , Ratones , Células Madre Pluripotentes/citología , Unión Proteica , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica , Proteómica , Especificidad por Sustrato , Transcripción Genética
7.
Development ; 140(12): 2468-71, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23715540

RESUMEN

There is currently particular interest in the field of nuclear reprogramming, a process by which the identity of specialised cells may be changed, typically to an embryonic-like state. Reprogramming procedures provide insight into many mechanisms of fundamental cell biology and have several promising applications, most notably in healthcare through the development of human disease models and patient-specific tissue-replacement therapies. Here, we introduce the field of nuclear reprogramming and briefly discuss six of the procedures by which reprogramming may be experimentally performed: nuclear transfer to eggs or oocytes, cell fusion, extract treatment, direct reprogramming to pluripotency and transdifferentiation.


Asunto(s)
Reprogramación Celular , Técnicas de Transferencia Nuclear , Óvulo/metabolismo , Animales , Membrana Celular/metabolismo , Transdiferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Profase Meiótica I , Metafase , Óvulo/citología , Transcripción Genética
8.
Brief Funct Genomics ; 12(3): 164-73, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23585580

RESUMEN

Epigenetic memory represents a natural mechanism whereby the identity of a cell is maintained through successive cell cycles, allowing the specification and maintenance of differentiation during development and in adult cells. Cancer is a loss or reversal of the stable differentiated state of adult cells and may be mediated in part by epigenetic changes. The identity of somatic cells can also be reversed experimentally by nuclear reprogramming. Nuclear reprogramming experiments reveal the mechanisms required to activate embryonic gene expression in adult cells and thus provide insight into the reversal of epigenetic memory. In this article, we will introduce epigenetic memory and the mechanisms by which it may operate. We limit our discussion primarily to the context of nuclear reprogramming and briefly discuss the relevance of memory and reprogramming to cancer biology.


Asunto(s)
Reprogramación Celular/genética , Epigénesis Genética/genética , Neoplasias/genética , Animales , Metilación de ADN/genética , Humanos
9.
J Cell Sci ; 125(Pt 24): 6094-104, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23077180

RESUMEN

How cell fate becomes restricted during somatic cell differentiation is a long-lasting question in biology. Epigenetic mechanisms not present in pluripotent cells and acquired during embryonic development are expected to stabilize the differentiated state of somatic cells and thereby restrict their ability to convert to another fate. The histone variant macroH2A acts as a component of an epigenetic multilayer that heritably maintains the silent X chromosome and has been shown to restrict tumor development. Here we show that macroH2A marks the differentiated cell state during mouse embryogenesis. MacroH2A.1 was found to be present at low levels upon the establishment of pluripotency in the inner cell mass and epiblast, but it was highly enriched in the trophectoderm and differentiated somatic cells later in mouse development. Chromatin immunoprecipitation revealed that macroH2A.1 is incorporated in the chromatin of regulatory regions of pluripotency genes in somatic cells such as mouse embryonic fibroblasts and adult neural stem cells, but not in embryonic stem cells. Removal of macroH2A.1, macroH2A.2 or both increased the efficiency of induced pluripotency up to 25-fold. The obtained induced pluripotent stem cells reactivated pluripotency genes, silenced retroviral transgenes and contributed to chimeras. In addition, overexpression of macroH2A isoforms prevented efficient reprogramming of epiblast stem cells to naïve pluripotency. In summary, our study identifies for the first time a link between an epigenetic mark and cell fate restriction during somatic cell differentiation, which helps to maintain cell identity and antagonizes induction of a pluripotent stem cell state.


Asunto(s)
Células Madre Embrionarias/fisiología , Histonas/metabolismo , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular/genética , Reprogramación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigenómica , Femenino , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transfección
10.
Commun Integr Biol ; 5(4): 329-33, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23060954

RESUMEN

Nucleocytoplasmic hybrid (cybrid) embryos result from the combination of the nucleus of one species, and the egg cytoplasm of another species. Cybrid embryos can be obtained either in the haploid state by the cross-fertilization or intra-cytoplasmic injection of an enucleated egg with sperm from another species, or in the diploid state by the technique of interspecies somatic cell nuclear transfer (iSCNT). Cybrids that originate from the combination of the nucleus and the cytoplasm of distantly related species commonly expire during early embryonic development, and the cause of this arrest is currently under investigation. Here we show that cells isolated from a Xenopus cybrid (Xenopus (Silurana) tropicalis haploid nucleus combined with Xenopus laevis egg cytoplasm) embryo are unable to proliferate and expand normally in vitro. We also provide evidence that the lack of nuclear donor species maternal poly(A)(+) RNA-dependent factors in the recipient species egg may contribute to the developmental dead-end of distantly-related cybrid embryos. Overall, the data are consistent with the view that the development promoted by one species' nucleus is dependent on the presence of maternally-derived, mRNA encoded, species-specific factors. These results also show that cybrid development can be improved without nuclear species mitochondria supplementation or replacement.

11.
Nucleus ; 2(6): 533-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22064467

RESUMEN

How various epigenetic mechanisms restrict chromatin plasticity to determine the stability of repressed genes is poorly understood. Nuclear transfer to Xenopus oocytes induces the transcriptional reactivation of previously silenced genes. Recent work suggests that it can be used to analyze the epigenetic stability of repressed states. The notion that the epigenetic state of genes is an important determinant of the efficiency of nuclear reprogramming is supported by the differential reprogramming of given genes from different starting epigenetic configurations. After nuclear transfer, transcription from the inactive X chromosome of post-implantation-derived epiblast stem cells is reactivated. However, the same chromosome is resistant to reactivation when embryonic fibroblasts are used. Here, we discuss different kinds of evidence that link the histone variant macroH2A to the increased stability of repressed states. We focus on developmentally regulated X chromosome inactivation and repression of autosomal pluripotency genes, where macroH2A may help maintain the long-term stability of the differentiated state of somatic cells.


Asunto(s)
Epigénesis Genética/fisiología , Histonas/metabolismo , Técnicas de Transferencia Nuclear , Oocitos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Histonas/genética , Oocitos/citología , Proteínas Represoras/genética , Transcripción Genética/fisiología , Cromosoma X/genética , Cromosoma X/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis
12.
Trends Genet ; 27(12): 516-25, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21940062

RESUMEN

Patient-specific somatic cell reprogramming is likely to have a large impact on medicine by providing a source of cells for disease modelling and regenerative medicine. Several strategies can be used to reprogram cells, yet they are generally characterised by a low reprogramming efficiency, reflecting the remarkable stability of the differentiated state. Transcription factors, chromatin modifications, and noncoding RNAs can increase the efficiency of reprogramming. However, the success of nuclear reprogramming is limited by epigenetic mechanisms that stabilise the state of gene expression in somatic cells and thereby resist efficient reprogramming. We review here the factors that influence reprogramming efficiency, especially those that restrict the natural reprogramming mechanisms of eggs and oocytes. We see this as a step towards understanding the mechanisms by which nuclear reprogramming takes place.


Asunto(s)
Reprogramación Celular , Epigénesis Genética , Animales , División Celular , Metilación de ADN , Humanos , Modelos Genéticos , Transcripción Genética
13.
Nat Rev Mol Cell Biol ; 12(7): 453-9, 2011 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-21697902

RESUMEN

Differentiated cells can be experimentally reprogrammed back to pluripotency by nuclear transfer, cell fusion or induced pluripotent stem cell technology. Nuclear transfer and cell fusion can lead to efficient reprogramming of gene expression. The egg and oocyte reprogramming process includes the exchange of somatic proteins for oocyte proteins, the post-translational modification of histones and the demethylation of DNA. These events occur in an ordered manner and on a defined timescale, indicating that reprogramming by nuclear transfer and by cell fusion rely on deterministic processes.


Asunto(s)
Núcleo Celular/metabolismo , Reprogramación Celular , Oocitos/metabolismo , Óvulo/metabolismo , Animales , Desdiferenciación Celular , Fusión Celular , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Femenino , Expresión Génica , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Metilación , Técnicas de Transferencia Nuclear , Oocitos/citología , Óvulo/citología , Factores de Tiempo , Xenopus laevis
14.
Proc Natl Acad Sci U S A ; 107(12): 5483-8, 2010 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-20212135

RESUMEN

When transplanted into Xenopus oocytes, the nuclei of mammalian somatic cells are reprogrammed to express stem cell genes such as Oct4, Nanog, and Sox2. We now describe an experimental system in which the pluripotency genes Sox2 and Oct4 are repressed in retinoic acid-treated ES cells but are reprogrammed up to 100% within 24 h by injection of nuclei into the germinal vesicle (GV) of growing Xenopus oocytes. The isolation of GVs in nonaqueous medium allows the reprogramming of individual injected nuclei to be seen in real time. Analysis using fluorescence recovery after photobleaching shows that nuclear transfer is associated with an increase in linker histone mobility. A simultaneous loss of somatic H1 linker histone and incorporation of the oocyte-specific linker histone B4 precede transcriptional reprogramming. The loss of H1 is not required for gene reprogramming. We demonstrate both by antibody injection experiments and by dominant negative interference that the incorporation of B4 linker histone is required for pluripotency gene reactivation during nuclear reprogramming. We suggest that the binding of oocyte-specific B4 linker histone to chromatin is a key primary event in the reprogramming of somatic nuclei transplanted to amphibian oocytes.


Asunto(s)
Núcleo Celular/metabolismo , Histonas/metabolismo , Oocitos/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Cromatina/metabolismo , Femenino , Células HeLa , Humanos , Técnicas In Vitro , Técnicas de Transferencia Nuclear , Factor 3 de Transcripción de Unión a Octámeros/genética , Oocitos/citología , Oocitos/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Regiones Promotoras Genéticas , Factores de Transcripción SOXB1/genética , Activación Transcripcional/efectos de los fármacos , Tretinoina/farmacología , Xenopus , Proteínas de Xenopus/genética
15.
Plant Biotechnol J ; 8(1): 38-46, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19929900

RESUMEN

We constructed a novel autonomously replicating gene expression shuttle vector, with the aim of developing a system for transiently expressing proteins at levels useful for commercial production of vaccines and other proteins in plants. The vector, pRIC, is based on the mild strain of the geminivirus Bean yellow dwarf virus (BeYDV-m) and is replicationally released into plant cells from a recombinant Agrobacterium tumefaciens Ti plasmid. pRIC differs from most other geminivirus-based vectors in that the BeYDV replication-associated elements were included in cis rather than from a co-transfected plasmid, while the BeYDV capsid protein (CP) and movement protein (MP) genes were replaced by an antigen encoding transgene expression cassette derived from the non-replicating A. tumefaciens vector, pTRAc. We tested vector efficacy in Nicotiana benthamiana by comparing transient cytoplasmic expression between pRIC and pTRAc constructs encoding either enhanced green fluorescent protein (EGFP) or the subunit vaccine antigens, human papillomavirus subtype 16 (HPV-16) major CP L1 and human immunodeficiency virus subtype C p24 antigen. The pRIC constructs were amplified in planta by up to two orders of magnitude by replication, while 50% more HPV-16 L1 and three- to seven-fold more EGFP and HIV-1 p24 were expressed from pRIC than from pTRAc. Vector replication was shown to be correlated with increased protein expression. We anticipate that this new high-yielding plant expression vector will contribute towards the development of a viable plant production platform for vaccine candidates and other pharmaceuticals.


Asunto(s)
Proteínas de la Cápside/genética , Geminiviridae/genética , Vectores Genéticos , Proteína p24 del Núcleo del VIH/genética , Nicotiana/genética , Proteínas Oncogénicas Virales/genética , Proteínas de la Cápside/metabolismo , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteína p24 del Núcleo del VIH/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Rhizobium/genética , Nicotiana/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...