Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 23(14): 3280-3288, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37387504

RESUMEN

Recent advances have been made in coupling microfluidic chips with X-ray equipment, enabling structural analysis of samples directly in microfluidic devices. This important step mainly took place at powerful synchrotron facilities because of the need for a beam reduced in size to fit the microfluidic channel dimensions but still intense. In this work, we discuss how improvements of an X-ray laboratory beamline and an optimal design of a microfluidic device allow reliable structural information to be obtained without the need for a synchrotron. We evaluate the potential of these new developments by probing several well known dispersions. These include dense inorganic gold and silica nanoparticles that scatter photons quite intensely, the bovine serum albumin (BSA) macromolecule, with moderate contrast, to highlight possible applications in biology, and latex nanospheres with only weak contrast with the solvent to show the limits of the setup. We established a proof of concept for a versatile setup that will open the way for more complex lab-on-a-chip devices suitable for in situ and operando structural analysis by small angle X-ray scattering analysis without the necessity for a synchrotron source.

2.
J Colloid Interface Sci ; 630(Pt B): 924-933, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36370643

RESUMEN

HYPOTHESIS: Due to their unique quantum yield and photostability performances, quantum nanoplatelets are very promising building blocks for future generations of displays. The directed assembly of such colloidal nano-objects in the shape of micro-pixels is thus the next mandatory step to reach this goal. Selectively trapping them on electrostatically charged patterns by nanoxerography could be a versatile and appealing strategy but requires a full understanding of the assembly mechanisms in order to make the most of their integration. EXPERIMENTS: We propose an experimental platform based on a smart resealable microfluidic chip coupled to an inverted optical fluorescence microscope and a high-speed camera for in situ access of such assembly mechanisms, using CdSe/CdZnS quantum nanoplatelets as model nano-objects. The photoluminescence signal of the nanoplatelet patterns is thus recorded in real time during their assembly and data extracted after image processing. FINDINGS: The coupling of experimental results and numerical simulations evidences the main role of advection at the origin of this directed nanoparticle trapping. Deep understanding of the involved mechanisms and tuning of experimental parameters allow to make high resolution quantum nanoplatelet based micro-pixels with a fine control of their lateral and vertical dimensions.

3.
Soft Matter ; 17(11): 3174-3190, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33621310

RESUMEN

A new numerical framework based on Stokesian dynamics is used to study a shear-induced glass-to-crystal transition in suspensions of clay-like anisotropically charged platelets. The structures obtained in quiescent conditions are in agreement with previous Monte Carlo results: a liquid phase at very short interaction range (high salt concentration), phase separation and a gel without large scale density fluctuations at intermediate interaction ranges, and glassy states at very large interaction ranges. When initially glassy suspensions are sheared, hydrodynamic torques first rotate platelets so they can reach a transient quasi-nematic disordered state. These orientational correlations permit to unlock translational degrees of freedom and the platelets then form strings aligned with the velocity direction and hexagonally packed in the gradient-vorticity plane. Under steady shear, platelet orientations are correlated but the system is not nematic. After flow cessation and relaxation in quiescent conditions, positional and orientational order are further improved as the platelet suspension experiences a transition to a nematic hexagonal crystal. Energy calculations and the existence of residual stress anisotropy after relaxation show that this final structure is not an equilibrium state but rather a new ordered, arrested state. The transient, nematic, disordered state induced by shear immediately after startup and unlocking translational degrees of freedom is thought to be an initial step that may be generic for other suspensions of strongly anisotropic colloids with important translation-orientation coupling induced by long-range interactions.

4.
Phys Rev E ; 104(6): L062601, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030960

RESUMEN

We show, using a model coupling mass transport and liquid theory calculations for a charge-stabilized colloidal dispersion, that diffusion significantly limits measurement times of its equation of state (EOS), osmotic pressure vs composition, using the osmotic compression technique. Following this result, we present a microfluidic chip allowing one to measure the entire EOS of a charged dispersion at the nanoliter scale in a few hours. We also show that time-resolved analyses of relaxation to equilibrium in this microfluidic experiment lead to direct estimates of the collective diffusion coefficient of the dispersion in Donnan equilibrium with a salt reservoir.

5.
Phys Chem Chem Phys ; 21(35): 18866-18876, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31436779

RESUMEN

The aggregation behavior of particles in nonpolar media is studied with time-resolved light scattering. At low surfactant concentrations particles are weakly charged and suspensions are not stable. The suspensions become progressively more stable with increasing surfactant concentration as particles become more highly charged. At high concentrations the particles become neutralized and aggregation is again fast. The theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) is able to predict the stability ratios quantitatively by using the experimentally measured surface charges, screening lengths and van der Waals forces.

6.
Eur Phys J E Soft Matter ; 41(8): 94, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30128834

RESUMEN

The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art.

7.
Eur Phys J E Soft Matter ; 41(5): 69, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29802492

RESUMEN

The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is widely used to model interactions between weakly charged spheres in dilute suspensions. For particles bearing a higher charge, the linearized electrostatics underlying the DLVO theory is no longer valid but it is possible to map the real colloidal system to an auxiliary one that still obeys linear electrostatics but which involves a different, effective pair potential. This procedure, termed renormalization, can be performed in various ways, the most widely used being surface charge renormalization (SCR) based on the cell model. SCR is still limited to dilute suspensions since the auxiliary system is made of spheres interacting through a DLVO-like pair potential. The recent extrapolated point charge (EPC) renormalization overcomes this limitation by using point charges in the auxiliary system and has indeed been shown to produce better results than the SCR in dense suspensions. Here, we recall that the DLVO-like potential used in the SCR can be modified to account for many-body ion-colloid core exclusion effects (a model termed SCRX here); we show that the accuracy of the EPC and SCRX renormalizations is virtually identical, and conclude by explaining why the EPC method is still the most attractive option of the two in many cases.

8.
Langmuir ; 33(38): 10051-10060, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28850237

RESUMEN

Increasing demand is appearing for the fast, robust prediction of the equation of state of colloidal suspensions, notably with a view to using it as input data to calculate transport coefficients in complex flow solvers. This is also of interest in rheological studies, industrial screening tests of new formulations, and the real-time interpretation of osmotic compression experiments, for example. For charge-stabilized spherical particles, the osmotic pressure can be computed with standard liquid theories. However, this calculation can sometimes be lengthy and/or unstable under some physicochemical conditions, a drawback that precludes its use in multiscale flow simulators. As a simple, fast, and robust replacement, the literature reports estimations of the osmotic pressure that have been built by adding the Carnahan-Starling and the cell model pressures (CSCM model). The first contribution is intended to account for colloid-colloid contacts, and the second, for electrostatic effects. This approximation has not yet been thoroughly tested. In this work, the CSCM is evaluated by comparison with data from experiments on silica particles, Monte Carlo simulations, and solutions of the accurate Rogers-Young integral equation scheme with a hard-sphere Yukawa potential obtained from the extrapolated point-charge renormalization method for a wide range of volume fractions, surface charge densities, and interaction ranges. We find that the CSCM is indeed perfectly adequate in the electrostatically concentrated regime, where it can be used from vanishingly small to high surface charge because there is error cancellation between the Carnahan-Starling and cell model contributions at intermediate charge. The CSCM is thus a nice extension of the cell model to liquid-like dense suspensions, which should find application in the domains mentioned above. However, it fails for dilute suspensions with strong electrostatics. In this case, we show that, and explain why, perturbation methods and the rescaled mean spherical approximation are good alternatives in terms of precision, ease of implementation, computational cost, and robustness.

9.
Langmuir ; 32(40): 10430-10444, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27623196

RESUMEN

Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.


Asunto(s)
Electricidad Estática , Suspensiones/química , Simulación por Computador , Iones/química , Modelos Químicos , Porosidad , Sales (Química)/química , Termodinámica
10.
Langmuir ; 31(30): 8310-7, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26158430

RESUMEN

A scenario is proposed to describe the capture of a spherical particle around a cylindrical pore. This geometry, "ideal" as far as the problem of particle capture on a filtration membrane is concerned, is clearly relevant in view of the pore-scale geometry of nucleopore or microsieve filtration membranes, and also of some microfluidic systems used to perform fluid-particle separation. The present scenario consists of three successive steps: particle deposition on the membrane away from the pore, subsequent reentrainment of some of the deposited particles by rolling on the membrane surface, and final arrest by a stabilizing van der Waals torque when the particle rolls over the pore edge. A modeling of these three steps requires the hydrodynamic and physicochemical particle-membrane interactions to be detailed close to the singular pore edge region and raises questions concerning the role of particle surface roughness. The relevance and robustness of such of a scenario for rough micrometer-sized latex particles is emphasized and comparisons are made with existing experimental data.


Asunto(s)
Técnicas Analíticas Microfluídicas , Hidrodinámica , Técnicas Analíticas Microfluídicas/instrumentación , Tamaño de la Partícula , Propiedades de Superficie
11.
Langmuir ; 30(23): 6721-9, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24834492

RESUMEN

The cell model is a ubiquitous, fast, and relatively easily implemented model used to estimate the osmotic pressure of a colloidal dispersion. It has been shown to yield accurate approximations of the pressure in dispersions with a low salt content. It is generally accepted that it performs well when long-ranged interactions are involved and the structure of the dispersion is solidlike. The aim of the present work is to determine quantitatively the error committed by assuming the pressure computed with the cell model is the real osmotic pressure of a dispersion. To this end, cell model pressures are compared to a correct estimation of the actual pressures obtained from Poisson-Boltzmann Brownian dynamics simulations including many-body electrostatics and the thermal motion of the colloids. The comparison is performed for various colloidal sizes and charges, salt contents, and volume fractions. It is demonstrated that the accuracy of the cell model predictions is a function of only the average intercolloid distance scaled by Debye's length κd̅ and the normalized colloidal charge. The cell model is accurate for κd̅ < 1 and not reliable for κd̅ > 5 independently of the colloidal charge. In the 1 < κd̅ < 5 range, covering a wide set of experimental conditions, the colloidal surface charge has a large influence on the error associated with the cell approximation. The results presented in this article should provide a useful reference to determine a priori if the cell model can be expected to predict accurately an equation of state for a given set of physicochemical parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...