Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Physiol Plant ; 168(3): 630-647, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31268560

RESUMEN

In a search for slowly evolving nuclear genes that may cast light on the deep evolution of plants, we carried out phylogenetic analyses of two well-characterized subfamilies of P-type pumps (P2A and P5A ATPases) from representative branches of the eukaryotic tree of life. Both P-type ATPase genes were duplicated very early in eukaryotic evolution and before the divergence of the present eukaryotic supergroups. Synapomorphies identified in the sequences provide evidence that green plants and red algae are more distantly related than are green plants and eukaryotic supergroups in which secondary or tertiary plastids are common, such as several groups belonging to the clade that includes Stramenopiles, Alveolata, Rhizaria, Cryptophyta and Haptophyta (SAR). We propose that red algae branched off soon after the first photosynthesizing eukaryote had acquired a primary plastid, while in another lineage that led to SAR, the primary plastid was lost but, in some cases, regained as a secondary or tertiary plastid.


Asunto(s)
Adenosina Trifosfatasas/genética , Evolución Biológica , Duplicación de Gen , Proteínas de Plantas/genética , Rhodophyta/genética , Viridiplantae/genética , Filogenia , Plastidios
2.
Mol Syst Biol ; 15(2): e8513, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30777893

RESUMEN

Despite their importance in determining protein abundance, a comprehensive catalogue of sequence features controlling protein-to-mRNA (PTR) ratios and a quantification of their effects are still lacking. Here, we quantified PTR ratios for 11,575 proteins across 29 human tissues using matched transcriptomes and proteomes. We estimated by regression the contribution of known sequence determinants of protein synthesis and degradation in addition to 45 mRNA and 3 protein sequence motifs that we found by association testing. While PTR ratios span more than 2 orders of magnitude, our integrative model predicts PTR ratios at a median precision of 3.2-fold. A reporter assay provided functional support for two novel UTR motifs, and an immobilized mRNA affinity competition-binding assay identified motif-specific bound proteins for one motif. Moreover, our integrative model led to a new metric of codon optimality that captures the effects of codon frequency on protein synthesis and degradation. Altogether, this study shows that a large fraction of PTR ratio variation in human tissues can be predicted from sequence, and it identifies many new candidate post-transcriptional regulatory elements.


Asunto(s)
Proteínas/genética , Proteoma/genética , Distribución Tisular/genética , Transcriptoma/genética , Regulación de la Expresión Génica/genética , Genoma Humano/genética , Humanos , Espectrometría de Masas/métodos , Proteómica/métodos , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos
3.
Nat Commun ; 8(1): 1131, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-29070809

RESUMEN

The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular, altered energy metabolism resulting in reduced respiration and increased fermentation, as well as balancing of amino-acid biosynthesis and reduced thiamine biosynthesis seem to be particularly important. We confirm our findings by inverse engineering and physiological characterization and show that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion.


Asunto(s)
Proteínas Recombinantes/metabolismo , Levaduras/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Estrés del Retículo Endoplásmico , Genes Reporteros , Microbiología Industrial , Mutación , Fenotipo , Proteínas Recombinantes/biosíntesis , Tiamina/biosíntesis , Factores de Transcripción/genética , Transcriptoma , Levaduras/genética
4.
Eur J Endocrinol ; 177(6): 445-453, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28855268

RESUMEN

CONTEXT: Inflammatory infiltrates are sometimes present in solid tumors and may be coupled to clinical behavior or etiology. Infectious viruses contribute to tumorigenesis in a significant fraction of human neoplasias. OBJECTIVE: Characterize inflammatory infiltrates and possible viral transcription in primary hyperparathyroidism. DESIGN: From the period 2007 to 2016, a total of 55 parathyroid tumors (51 adenomas and 4 hyperplasias) with prominent inflammatory infiltrates were identified from more than 2000 parathyroid tumors in the pathology archives, and investigated by immunohistochemistry for CD4, CD8, CD20 and CD45 and scored as +0, +1 or +2. Clinicopathological data were compared to 142 parathyroid adenomas without histological evidence of inflammation. Transcriptome sequencing was performed for 13 parathyroid tumors (four inflammatory, 9 non-inflammatory) to identify potential viral transcripts. RESULTS: Tumors had prominent germinal center-like nodular (+2) lymphocytic infiltrates consisting of T and B lymphocytes (31%) and/or diffuse (+1-2) infiltrates of predominantly CD8+ T lymphocytes (84%). In the majority of cases with adjacent normal parathyroid tissue, the normal rim was unaffected by the inflammatory infiltrates (96%). Presence of inflammatory infiltrates was associated with higher levels of serum-PTH (P = 0.007) and oxyphilic differentiation (P = 0.002). Co-existent autoimmune disease was observed in 27% of patients with inflammatory infiltrates, which in turn was associated with oxyphilic differentiation (P = 0.041). Additionally, prescription of anti-inflammatory drugs was associated with lower serum ionized calcium (P = 0.037). CONCLUSIONS: No evidence of virus-like sequences in the parathyroid tumors could be found by transcriptome sequencing, suggesting that other factors may contribute to attract the immune system to the parathyroid tumor tissue.


Asunto(s)
Adenoma/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Hiperparatiroidismo Primario/inmunología , Glándulas Paratiroides/inmunología , Neoplasias de las Paratiroides/inmunología , Adenoma/metabolismo , Adenoma/patología , Adenoma/virología , Antígenos CD20/metabolismo , Linfocitos B/metabolismo , Linfocitos B/patología , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Estudios de Cohortes , Femenino , Humanos , Hiperparatiroidismo Primario/metabolismo , Hiperparatiroidismo Primario/patología , Hiperparatiroidismo Primario/virología , Hiperplasia/inmunología , Hiperplasia/patología , Inmunohistoquímica , Antígenos Comunes de Leucocito/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Persona de Mediana Edad , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/patología , Glándulas Paratiroides/virología , Neoplasias de las Paratiroides/metabolismo , Neoplasias de las Paratiroides/patología , Neoplasias de las Paratiroides/virología , ARN Viral/metabolismo , Estudios Retrospectivos , Transcripción Genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
5.
Infect Genet Evol ; 55: 297-304, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28919550

RESUMEN

Cryptosporidium hominis gp60 subtype IbA10G2 is a common cause of cryptosporidiosis. This subtype is responsible for many waterborne outbreaks as well as sporadic cases and is considered virulent and highly important in the epidemiology of cryptosporidiosis. Due to low heterogeneity within the genome of C. hominis it has been difficult to identify epidemiological markers with higher resolution than gp60. However, new markers are required in order to improve outbreak investigations and studies of the transmission dynamics of this clinically important subtype. Based on the whole genome sequences of 17 C. hominis isolates, we have identified several differential loci and developed a new sequence based typing panel with higher resolution than gp60. An amplicon sequencing method was also developed which is based on a one-step PCR which can be sequenced using a Next Generation Sequencing (NGS) platform. Such a system provides a rapid and high-throughput workflow. A panel of nine loci with 10 single nucleotide variants (SNV) was selected and evaluated using clinical IbA10G2 isolates from sporadic, cluster and outbreak associated cases. The specimens were separated into 10 different genetic profiles named sequence types (STs). All isolates within an outbreak or cluster belonged to the same ST, including several samples from the two large waterborne outbreaks which occurred in Sweden between 2010 and 2011 indicating that these outbreaks might be linked. The results demonstrate the methods suitability for improved genotyping of C. hominis IbA10G2.


Asunto(s)
Cryptosporidium/clasificación , Cryptosporidium/genética , Tipificación Molecular , Reacción en Cadena de la Polimerasa , Marcadores Genéticos , Variación Genética , Genoma de Protozoos , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
6.
PLoS One ; 12(4): e0175422, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28426741

RESUMEN

Organisms have evolved the ability to tolerate toxic substances in their environments, often by producing metabolic enzymes that efficiently detoxify the toxicant. Inorganic arsenic is one of the most toxic and carcinogenic substances in the environment, but many organisms, including humans, metabolise inorganic arsenic to less toxic metabolites. This multistep process produces mono-, di-, and trimethylated arsenic metabolites, which the organism excretes. In humans, arsenite methyltransferase (AS3MT) appears to be the main metabolic enzyme that methylates arsenic. In this study, we examined the evolutionary origin of AS3MT and assessed the ability of different genotypes to produce methylated arsenic metabolites. Phylogenetic analysis suggests that multiple, independent horizontal gene transfers between different bacteria, and from bacteria to eukaryotes, increased tolerance to environmental arsenic during evolution. These findings are supported by the observation that genetic variation in AS3MT correlates with the capacity to methylate arsenic. Adaptation to arsenic thus serves as a model for how organisms evolve to survive under toxic conditions.


Asunto(s)
Arsénico/toxicidad , Transferencia de Gen Horizontal , Metiltransferasas/metabolismo , Arsénico/metabolismo , Eucariontes/metabolismo , Filogenia
7.
Mol Syst Biol ; 13(3): 916, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28254760

RESUMEN

To elucidate the molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome-scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD+ and glutathione (GSH) in subjects with high HS Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD+ repletion on the development of NAFLD, we added precursors for GSH and NAD+ biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof-of-concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.


Asunto(s)
Glutatión/metabolismo , Lipoproteínas/metabolismo , Metabolómica/métodos , NAD/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Serina/administración & dosificación , Animales , Modelos Animales de Enfermedad , Femenino , Regulación Enzimológica de la Expresión Génica , Genoma , Glicina/sangre , Humanos , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Modelación Específica para el Paciente , Serina/sangre , Serina/uso terapéutico
8.
mBio ; 8(1)2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28074024

RESUMEN

To understand the role of glycosaminoglycans in bacterial cellular invasion, xylosyltransferase-deficient mutants of Chinese hamster ovary (CHO) cells were created using clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated gene 9 (CRISPR-cas9) gene targeting. When these mutants were compared to the pgsA745 cell line, a CHO xylosyltransferase mutant generated previously using chemical mutagenesis, an unexpected result was obtained. Bacterial invasion of pgsA745 cells by group B Streptococcus (GBS), group A Streptococcus, and Staphylococcus aureus was markedly reduced compared to the invasion of wild-type cells, but newly generated CRISPR-cas9 mutants were only resistant to GBS. Invasion of pgsA745 cells was not restored by transfection with xylosyltransferase, suggesting that an additional mutation conferring panresistance to multiple bacteria was present in pgsA745 cells. Whole-genome sequencing and transcriptome sequencing (RNA-Seq) uncovered a deletion in the gene encoding the laminin subunit α2 (Lama2) that eliminated much of domain L4a. Silencing of the long Lama2 isoform in wild-type cells strongly reduced bacterial invasion, whereas transfection with human LAMA2 cDNA significantly enhanced invasion in pgsA745 cells. The addition of exogenous laminin-α2ß1γ1/laminin-α2ß2γ1 strongly increased bacterial invasion in CHO cells, as well as in human alveolar basal epithelial and human brain microvascular endothelial cells. Thus, the L4a domain in laminin α2 is important for cellular invasion by a number of bacterial pathogens. IMPORTANCE: Pathogenic bacteria penetrate host cellular barriers by attachment to extracellular matrix molecules, such as proteoglycans, laminins, and collagens, leading to invasion of epithelial and endothelial cells. Here, we show that cellular invasion by the human pathogens group B Streptococcus, group A Streptococcus, and Staphylococcus aureus depends on a specific domain of the laminin α2 subunit. This finding may provide new leads for the molecular pathogenesis of these bacteria and the development of novel antimicrobial drugs.


Asunto(s)
Endocitosis , Interacciones Huésped-Patógeno , Laminina/metabolismo , Staphylococcus aureus/fisiología , Streptococcus agalactiae/fisiología , Streptococcus pyogenes/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Eliminación de Gen , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Laminina/genética , Análisis de Secuencia de ADN
9.
Plant J ; 89(3): 429-441, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27801964

RESUMEN

Tripterygium wilfordii (Celastraceae) is a medicinal plant with anti-inflammatory and immunosuppressive properties. Identification of a vast array of unusual sesquiterpenoids, diterpenoids and triterpenoids in T. wilfordii has spurred investigations of their pharmacological properties. The tri-epoxide lactone triptolide was the first of many diterpenoids identified, attracting interest due to the spectrum of bioactivities. To probe the genetic underpinning of diterpenoid diversity, an expansion of the class II diterpene synthase (diTPS) family was recently identified in a leaf transcriptome. Following detection of triptolide and simple diterpene scaffolds in the root, we sequenced and mined the root transcriptome. This allowed identification of the root-specific complement of TPSs and an expansion in the class I diTPS family. Functional characterization of the class II diTPSs established their activities in the formation of four C-20 diphosphate intermediates, precursors of both generalized and specialized metabolism and a novel scaffold for Celastraceae. Functional pairs of the class I and II enzymes resulted in formation of three scaffolds, accounting for some of the terpenoid diversity found in T. wilfordii. The absence of activity-forming abietane-type diterpenes encouraged further testing of TPSs outside the canonical class I diTPS family. TwTPS27, close relative of mono-TPSs, was found to couple with TwTPS9, converting normal-copalyl diphosphate to miltiradiene. The phylogenetic distance to established diTPSs indicates neo-functionalization of TwTPS27 into a diTPS, a function not previously observed in the TPS-b subfamily. This example of evolutionary convergence expands the functionality of TPSs in the TPS-b family and may contribute miltiradiene to the diterpenoids of T. wilfordii.


Asunto(s)
Transferasas Alquil y Aril/genética , Liasas Intramoleculares/genética , Proteínas de Plantas/genética , Tripterygium/genética , Abietanos/química , Abietanos/metabolismo , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Diterpenos/química , Diterpenos/metabolismo , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Perfilación de la Expresión Génica/métodos , Liasas Intramoleculares/metabolismo , Estructura Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Familia de Multigenes , Fenantrenos/química , Fenantrenos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Homología de Secuencia de Aminoácido , Tripterygium/enzimología
10.
Endocrinology ; 158(2): 239-251, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27901589

RESUMEN

The adrenal gland is a composite endocrine organ with vital functions that include the synthesis and release of glucocorticoids and catecholamines. To define the molecular landscape that underlies the specific functions of the adrenal gland, we combined a genome-wide transcriptomics approach using messenger RNA sequencing of human tissues with immunohistochemistry-based protein profiling on tissue microarrays. Approximately two-thirds of all putative protein coding genes were expressed in the adrenal gland, and the analysis identified 253 genes with an elevated pattern of expression in the adrenal gland, with only 37 genes showing a markedly greater expression level (more than fivefold) in the adrenal gland compared with 31 other normal human tissue types analyzed. The analyses allowed for an assessment of the relative expression levels for well-known proteins involved in adrenal gland function but also identified previously poorly characterized proteins in the adrenal cortex, such as the FERM (4.1 protein, ezrin, radixin, moesin) domain containing 5 and the nephroblastoma overexpressed (NOV) protein homolog. We have provided a global analysis of the adrenal gland transcriptome and proteome, with a comprehensive list of genes with elevated expression in the adrenal gland and spatial information with examples of protein expression patterns for corresponding proteins. These genes and proteins constitute important starting points for an improved understanding of the normal function and pathophysiology of the adrenal glands.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Perfilación de la Expresión Génica , Proteoma , Humanos , Inmunohistoquímica
11.
Metab Eng ; 39: 19-28, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27815194

RESUMEN

Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions. Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether these mechanisms will be similar for tolerance to both organic and inorganic acids is yet to be explored. We therefore evolved Saccharomyces cerevisiae to acquire tolerance to HCl (inorganic acid) and to 0.3M L-lactic acid (organic acid) at pH 2.8 and then isolated several low pH tolerant strains. Whole genome sequencing and RNA-seq analysis of the evolved strains revealed different sets of genome alterations suggesting a divergence in adaptation to these two acids. An altered sterol composition and impaired iron uptake contributed to HCl tolerance whereas the formation of a multicellular morphology and rapid lactate degradation was crucial for tolerance to high concentrations of lactic acid. Our findings highlight the contribution of both the selection pressure and nature of the acid as a driver for directing the evolutionary path towards tolerance to low pH. The choice of carbon source was also an important factor in the evolutionary process since cells evolved on two different carbon sources (raffinose and glucose) generated a different set of mutations in response to the presence of lactic acid. Therefore, different strategies are required for a rational design of low pH tolerant strains depending on the acid of interest.


Asunto(s)
Ácidos/química , Adaptación Fisiológica/genética , Evolución Molecular Dirigida/métodos , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Regulación Fúngica de la Expresión Génica/genética , Mejoramiento Genético/métodos , Proteínas de Saccharomyces cerevisiae/genética
12.
Mol Syst Biol ; 12(10): 883, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27951527

RESUMEN

An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Línea Celular , Expresión Génica , Humanos , Proteoma/genética , Proteoma/metabolismo
13.
JCI Insight ; 1(10): e86837, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27699219

RESUMEN

Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Transcetolasa/metabolismo , Anciano , Femenino , Humanos , Inmunohistoquímica , Masculino , Pronóstico , Análisis de Secuencia de ARN , Transcriptoma
14.
Proc Natl Acad Sci U S A ; 113(34): E5082-9, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27506796

RESUMEN

The seed oil of Euphorbia lathyris L. contains a series of macrocyclic diterpenoids known as Euphorbia factors. They are the current industrial source of ingenol mebutate, which is approved for the treatment of actinic keratosis, a precancerous skin condition. Here, we report an alcohol dehydrogenase-mediated cyclization step in the biosynthetic pathway of Euphorbia factors, illustrating the origin of the intramolecular carbon-carbon bonds present in lathyrane and ingenane diterpenoids. This unconventional cyclization describes the ring closure of the macrocyclic diterpene casbene. Through transcriptomic analysis of E. lathyris L. mature seeds and in planta functional characterization, we identified three enzymes involved in the cyclization route from casbene to jolkinol C, a lathyrane diterpene. These enzymes include two cytochromes P450 from the CYP71 clan and an alcohol dehydrogenase (ADH). CYP71D445 and CYP726A27 catalyze regio-specific 9-oxidation and 5-oxidation of casbene, respectively. When coupled with these P450-catalyzed monooxygenations, E. lathyris ADH1 catalyzes dehydrogenation of the hydroxyl groups, leading to the subsequent rearrangement and cyclization. The discovery of this nonconventional cyclization may provide the key link to complete elucidation of the biosynthetic pathways of ingenol mebutate and other bioactive macrocyclic diterpenoids.


Asunto(s)
Antineoplásicos Fitogénicos/biosíntesis , Diterpenos/metabolismo , Euphorbia/química , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Antineoplásicos Fitogénicos/química , Clonación Molecular , Ciclización , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/química , Euphorbia/genética , Euphorbia/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Oxidación-Reducción , Fenilpropionatos/química , Aceites de Plantas/química , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Semillas/química , Semillas/genética , Semillas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma
15.
Cell Metab ; 24(1): 172-84, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27345421

RESUMEN

To investigate the biological processes that are altered in obese subjects, we generated cell-specific integrated networks (INs) by merging genome-scale metabolic, transcriptional regulatory and protein-protein interaction networks. We performed genome-wide transcriptomics analysis to determine the global gene expression changes in the liver and three adipose tissues from obese subjects undergoing bariatric surgery and integrated these data into the cell-specific INs. We found dysregulations in mannose metabolism in obese subjects and validated our predictions by detecting mannose levels in the plasma of the lean and obese subjects. We observed significant correlations between plasma mannose levels, BMI, and insulin resistance (IR). We also measured plasma mannose levels of the subjects in two additional different cohorts and observed that an increased plasma mannose level was associated with IR and insulin secretion. We finally identified mannose as one of the best plasma metabolites in explaining the variance in obesity-independent IR.


Asunto(s)
Redes Reguladoras de Genes , Resistencia a la Insulina , Manosa/sangre , Redes y Vías Metabólicas , Mapas de Interacción de Proteínas , Adulto , Cirugía Bariátrica , Estudios de Casos y Controles , Femenino , Fructosa/metabolismo , Perfilación de la Expresión Génica , Humanos , Insulina/metabolismo , Secreción de Insulina , Masculino , Obesidad/sangre , Proteómica
16.
Mol Biol Cell ; 27(15): 2505-14, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27307591

RESUMEN

Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate-dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism.


Asunto(s)
Adenosina Trifosfato/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Estrés Fisiológico/fisiología , Adaptación Fisiológica , Etanol/metabolismo , Oxidación-Reducción , Saccharomyces cerevisiae/metabolismo , Tolerancia a la Sal/fisiología , Temperatura , Activación Transcripcional
17.
Mol Syst Biol ; 12(4): 862, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27044256

RESUMEN

Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome-wide transcriptome analyses of different tissues. Gene expression measurements from these independent datasets, generated using samples from fresh frozen surgical specimens and postmortem tissues, are consistent. Overall, the different genome-wide analyses support a distribution in which many proteins are found in all tissues and relatively few in a tissue-restricted manner. Moreover, we discuss the applications of publicly available omics data for building genome-scale metabolic models, used for analyzing cell and tissue functions both in physiological and in disease contexts.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Expresión Génica , Análisis de Secuencia de ARN/métodos , Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Humanos , Modelos Biológicos , Especificidad de Órganos
18.
PLoS One ; 10(12): e0145301, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26694548

RESUMEN

To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes up-regulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder.


Asunto(s)
Anticuerpos/metabolismo , Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Vejiga Urinaria/metabolismo , Urotelio/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Especificidad de Órganos , Análisis de Secuencia de ARN/métodos , Análisis de Matrices Tisulares/métodos , Regulación hacia Arriba
19.
OMICS ; 19(11): 659-68, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26488136

RESUMEN

The human uterus includes the complex endometrial mucosa, the endometrium that undergoes dynamic, hormone-dependent alterations throughout the life of fertile females. Here we have combined a genome-wide transcriptomics analysis with immunohistochemistry-based protein profiling to analyze gene expression patterns in the normal endometrium. Human endometrial tissues from five women were used for deep sequencing (RNA-Seq). The mRNA and protein expression data from the endometrium were compared to 31 (RNA) and 44 (protein) other normal tissue types, to identify genes with elevated expression in the endometrium and to localize the expression of corresponding proteins at a cellular resolution. Based on the expression levels of transcripts, we could classify all putative human protein coding genes into categories defined by expression patterns and found altogether 101 genes that showed an elevated pattern of expression in the endometrium, with only four genes showing more than five-fold higher expression levels in the endometrium compared to other tissues. In conclusion, our analysis based on transcriptomics and antibody-based protein profiling reports here comprehensive lists of genes with elevated expression levels in the endometrium, providing important starting points for a better molecular understanding of human reproductive biology and disease.


Asunto(s)
Endometrio/metabolismo , Proteoma , Transcriptoma , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Proteómica/métodos
20.
Proc Natl Acad Sci U S A ; 112(34): E4689-96, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261321

RESUMEN

There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.


Asunto(s)
Genoma Fúngico , Microfluídica , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...