Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Br J Haematol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924051

RESUMEN

Steroids are a mainstay in the treatment of acute lymphoblastic leukaemia (ALL) in children and adolescents; however, their use can cause clinically significant steroid-related neuropsychiatric symptoms (SRNS). As current knowledge on SRNS during ALL treatment is limited, we mapped the phenotypes, occurrence and treatment strategies using a database created by the international Ponte di Legno Neurotoxicity Working Group including data on toxicity in the central nervous system (CNS) in patients treated with frontline ALL protocols between 2000 and 2017. Ninety-four of 1813 patients in the CNS toxicity database (5.2%) experienced clinically significant SRNS with two peaks: one during induction and one during intensification phase. Dexamethasone was implicated in 86% of SRNS episodes. The most common symptoms were psychosis (52%), agitation (44%) and aggression (31%). Pharmacological treatment, mainly antipsychotics and benzodiazepines, was given to 87% of patients while 38% were hospitalised due to their symptoms. Recurrence of symptoms was reported in 29% of patients and two previously healthy patients required ongoing pharmacological treatment at the last follow up. Awareness of SRNS during ALL treatment and recommendation on treatment strategies merit further studies and consensus.

2.
EMBO J ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816652

RESUMEN

In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αß-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.

3.
Leukemia ; 36(12): 2751-2768, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36266325

RESUMEN

Delivery of effective anti-leukemic agents to the central nervous system (CNS) is considered essential for cure of childhood acute lymphoblastic leukemia. Current CNS-directed therapy comprises systemic therapy with good CNS-penetration accompanied by repeated intrathecal treatments up to 26 times over 2-3 years. This approach prevents most CNS relapses, but is associated with significant short and long term neurotoxicity. Despite this burdensome therapy, there have been no new drugs licensed for CNS-leukemia since the 1960s, when very limited anti-leukemic agents were available and there was no mechanistic understanding of leukemia survival in the CNS. Another major barrier to improved treatment is that we cannot accurately identify children at risk of CNS relapse, or monitor response to treatment, due to a lack of sensitive biomarkers. A paradigm shift in treating the CNS is needed. The challenges are clear - we cannot measure CNS leukemic load, trials have been unable to establish the most effective CNS treatment regimens, and non-toxic approaches for relapsed, refractory, or intolerant patients are lacking. In this review we discuss these challenges and highlight research advances aiming to provide solutions. Unlocking the potential of risk-adapted non-toxic CNS-directed therapy requires; (1) discovery of robust diagnostic, prognostic and response biomarkers for CNS-leukemia, (2) identification of novel therapeutic targets combined with associated investment in drug development and early-phase trials and (3) engineering of immunotherapies to overcome the unique challenges of the CNS microenvironment. Fortunately, research into CNS-ALL is now making progress in addressing these unmet needs: biomarkers, such as CSF-flow cytometry, are now being tested in prospective trials, novel drugs are being tested in Phase I/II trials, and immunotherapies are increasingly available to patients with CNS relapses. The future is hopeful for improved management of the CNS over the next decade.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Estudios Prospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Sistema Nervioso Central , Recurrencia , Microambiente Tumoral
4.
Cell Rep Med ; 3(8): 100717, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977468

RESUMEN

Leukemia cells re-program their microenvironment to augment blast proliferation and enhance treatment resistance. Means of clinically targeting such niche-driven treatment resistance remain ambiguous. We develop human induced pluripotent stem cell (hiPSC)-engineered niches to reveal druggable cancer-niche dependencies. We reveal that mesenchymal (iMSC) and vascular niche-like (iANG) hiPSC-derived cells support ex vivo proliferation of patient-derived leukemia cells, affect dormancy, and mediate treatment resistance. iMSCs protect dormant and cycling blasts against dexamethasone, while iANGs protect only dormant blasts. Leukemia proliferation and protection from dexamethasone-induced apoptosis is dependent on cancer-niche interactions mediated by CDH2. Consequently, we test CDH2 antagonist ADH-1 (previously in Phase I/II trials for solid tumors) in a very aggressive patient-derived xenograft leukemia mouse model. ADH-1 shows high in vivo efficacy; ADH-1/dexamethasone combination is superior to dexamethasone alone, with no ADH-1-conferred additional toxicity. These findings provide a proof-of-concept starting point to develop improved, potentially safer therapeutics targeting niche-mediated cancer dependencies in blood cancers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucemia , Neoplasias , Animales , Médula Ósea/patología , Dexametasona/farmacología , Resistencia a Antineoplásicos , Humanos , Leucemia/patología , Ratones , Neoplasias/patología , Microambiente Tumoral
5.
Nat Commun ; 12(1): 6905, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824279

RESUMEN

Although 90% of children with acute lymphoblastic leukemia (ALL) are now cured, the prognosis for infant-ALL remains dismal. Infant-ALL is usually caused by a single genetic hit that arises in utero: an MLL/KMT2A gene rearrangement (MLL-r). This is sufficient to induce a uniquely aggressive and treatment-refractory leukemia compared to older children. The reasons for disparate outcomes in patients of different ages with identical driver mutations are unknown. Using the most common MLL-r in infant-ALL, MLL-AF4, as a disease model, we show that fetal-specific gene expression programs are maintained in MLL-AF4 infant-ALL but not in MLL-AF4 childhood-ALL. We use CRISPR-Cas9 gene editing of primary human fetal liver hematopoietic cells to produce a t(4;11)/MLL-AF4 translocation, which replicates the clinical features of infant-ALL and drives infant-ALL-specific and fetal-specific gene expression programs. These data support the hypothesis that fetal-specific gene expression programs cooperate with MLL-AF4 to initiate and maintain the distinct biology of infant-ALL.


Asunto(s)
Feto , Regulación Neoplásica de la Expresión Génica , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animales , Sistemas CRISPR-Cas , Proteínas de Unión al ADN , Femenino , Edición Génica , N-Metiltransferasa de Histona-Lisina , Humanos , Hígado , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factores de Elongación Transcripcional
6.
Blood ; 138(19): 1870-1884, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34424946

RESUMEN

B-cell acute lymphoblastic leukemia (B-ALL) occurs most commonly in children, whereas chronic myeloid leukemia is more frequent in adults. The myeloid bias of hematopoiesis in elderly individuals has been considered causative, but the age of the bone marrow microenvironment (BMM) may be contributory. Using various murine models of B-ALL in young vs old mice, we recapitulated B-ALL preponderance in children vs adults. We showed differential effects of young vs old BM macrophages on B-ALL cell function. Molecular profiling using RNA- and ATAC-sequencing revealed pronounced differences in young vs old BMM-derived macrophages and enrichment for gene sets associated with inflammation. In concordance with the role of C-X-C motif chemokine (CXCL) 13 for disease-associated B-cell chemoattraction, we found CXCL13 to be highly expressed in young macrophages on a translational compared with a transcriptional level. Inhibition of CXCL13 in BM macrophages impaired leukemia cell migration and decreased the proliferation of cocultured B-ALL cells, whereas recombinant CXCL13 increased pAKT and B-ALL cell expansion. Pretreatment of B-ALL-initiating cells with CXCL13 accelerated B-ALL progression. Deficiency of Cxcr5, the receptor for CXCL13, on B-ALL-initiating cells prolonged murine survival, whereas high expression of CXCR5 in pediatric B-ALL may predict central nervous system relapse. CXCL13 staining was increased in bone sections from pediatric compared with adult patients with B-ALL. Taken together, our study shows that the age of the BMM and, in particular, BM macrophages influence the leukemia phenotype. The CXCR5-CXCL13 axis may act as prognostic marker and an attractive novel target for the treatment of B-ALL.


Asunto(s)
Quimiocina CXCL13/genética , Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Receptores CXCR5/genética , Microambiente Tumoral , Envejecimiento , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología
8.
Lancet Haematol ; 8(7): e513-e523, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34171282

RESUMEN

5-year overall survival rates have surpassed 90% for childhood acute lymphocytic leukaemia, but survivors are at risk for permanent health sequelae. Although event-free survival appropriately represents the outcome for cancers with poor overall survival, this metric is inadequate when cure rates are high but challenged by serious, persistent complications. Accordingly, a group of experts in paediatric haematology-oncology, representative of 17 international acute lymphocytic leukaemia study groups, launched an initiative to construct a measure, designated severe toxicity-free survival (STFS), to quantify the occurrence of physician-prioritised toxicities to be integrated with standard cancer outcome reporting. Five generic inclusion criteria (not present before cancer diagnosis, symptomatic, objectifiable, of unacceptable severity, permanent, or requiring unacceptable treatments) were used to assess 855 health conditions, which resulted in inclusion of 21 severe toxicities. Consensus definitions were reached through a modified Delphi process supplemented by two additional plenary meetings. The 21 severe toxicities include severe adverse health conditions that substantially affect activities of daily living and are refractory to therapy (eg, refractory seizures), are without therapeutic options (eg, blindness), or require substantially invasive treatment (eg, cardiac transplantation). Incorporation of STFS assessment into clinical trials has the potential to improve and diversify treatment strategies, focusing not only on traditional outcome events and overall survival but also the frequencies of the most severe toxicities. The two major aims of this Review were to: prioritise and define unacceptable long-term toxicity for patients with childhood acute lymphocytic leukaemia, and define how these toxicities should be combined into a composite quantity to be integrated with other reported outcomes. Although STFS quantifies the clinically unacceptable health tradeoff for cure using childhood acute lymphocytic leukaemia as a model disease, the prioritised severe toxicities are based on generic considerations of relevance to any other cancer diagnosis and age group.


Asunto(s)
Antineoplásicos/efectos adversos , Médicos/psicología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Ceguera/etiología , Niño , Pérdida Auditiva/etiología , Enfermedades Hematológicas/etiología , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Supervivencia sin Progresión , Insuficiencia Renal/etiología
9.
Blood ; 138(21): 2066-2092, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34111240

RESUMEN

t(4;11) MLL-AF4 acute leukemia is one of the most aggressive malignancies in the infant and pediatric population, yet we have little information on the molecular mechanisms responsible for disease progression. This impairs the development of therapeutic regimens that can address the aggressive phenotype and lineage plasticity of MLL-AF4-driven leukemogenesis. This study highlights novel mechanisms of disease development by focusing on 2 microRNAs (miRNAs) upregulated in leukemic blasts from primary patient samples: miR-130b and miR-128a. We show that miR-130b and miR-128a are downstream targets of MLL-AF4 and can individually drive the transition from a pre-leukemic stage to an acute leukemia in an entirely murine Mll-AF4 in vivo model. They are also required to maintain the disease phenotype. Interestingly, miR-130b overexpression led to a mixed/B-cell precursor (BCP)/myeloid leukemia, propagated by the lymphoid-primed multipotent progenitor (LMPP) population, whereas miR-128a overexpression resulted in a pro-B acute lymphoblastic leukemia (ALL), maintained by a highly expanded Il7r+c-Kit+ blast population. Molecular and phenotypic changes induced by these two miRNAs fully recapitulate the human disease, including central nervous system infiltration and activation of an MLL-AF4 expression signature. Furthermore, we identified 2 downstream targets of these miRNAs, NR2F6 and SGMS1, which in extensive validation studies are confirmed as novel tumor suppressors of MLL-AF4+ leukemia. Our integrative approach thus provides a platform for the identification of essential co-drivers of MLL-rearranged leukemias, in which the preleukemia to leukemia transition and lineage plasticity can be dissected and new therapeutic approaches can be tested.


Asunto(s)
Leucemia Mieloide Aguda/genética , MicroARNs/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Femenino , Regulación Leucémica de la Expresión Génica , Humanos , Masculino , Ratones , Preleucemia/genética , Factores de Elongación Transcripcional/genética , Translocación Genética
10.
Commun Biol ; 4(1): 73, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452446

RESUMEN

Central nervous system (CNS) involvement remains a challenge in the diagnosis and treatment of acute lymphoblastic leukemia (ALL). In this study, we identify CD79a (also known as Igα), a signaling component of the preB cell receptor (preBCR), to be associated with CNS-infiltration and -relapse in B-cell precursor (BCP)-ALL patients. Furthermore, we show that downregulation of CD79a hampers the engraftment of leukemia cells in different murine xenograft models, particularly in the CNS.


Asunto(s)
Antígenos CD79/metabolismo , Neoplasias del Sistema Nervioso Central/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Familia-src Quinasas/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Haematologica ; 106(4): 1056-1066, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32139432

RESUMEN

T-cell Acute Lymphoblastic Leukemia (T-ALL) is frequently characterized by glucocorticoid (GC) resistance, which is associated with inferior outcomes, thus highlighting the need for novel therapeutic approaches for GC resistant T-ALL. The pTCR/TCR signaling pathways play a critical role in cell fate decisions during physiological thymocyte development, with an interplay between TCR and glucocorticoid receptor (GR) signaling determining the T-lymphocyte selection process. We performed an shRNA screen in vitro and in vivo in T-ALL cell lines and patient derived xenograft (PDX) samples to identify vulnerabilities in the pTCR/TCR pathway and identified a critical role for the kinase LCK in cell proliferation. LCK knockdown or inhibition with dasatinib (DAS) caused cell cycle arrest. Combination of DAS with dexamethasone (DEX) resulted in significant drug synergy leading to cell death. The efficacy of this drug combination was underscored in a randomized phase II-like murine trial, recapitulating an early phase human clinical trial. T-ALL expansion in immunocompromised mice was significantly impaired using this drug combination, relative to mice receiving control vehicle or single drug treatment, highlighting the immediate clinical relevance of this drug combination for high risk T-ALL patients. Our results thus provide a strategy to improve the efficacy of current chemotherapy platforms and circumvent GC resistance.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Apoptosis , Línea Celular Tumoral , Dasatinib/farmacología , Dexametasona/farmacología , Resistencia a Antineoplásicos , Glucocorticoides/farmacología , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfocitos T
12.
Nat Commun ; 11(1): 3194, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581241

RESUMEN

Ph+ acute lymphoblastic leukemia (ALL) is characterized by the expression of an oncogenic fusion kinase termed BCR-ABL1. Here, we show that interleukin 7 receptor (IL7R) interacts with the chemokine receptor CXCR4 to recruit BCR-ABL1 and JAK kinases in close proximity. Treatment with BCR-ABL1 kinase inhibitors results in elevated expression of IL7R which enables the survival of transformed cells when IL7 was added together with the kinase inhibitors. Importantly, treatment with anti-IL7R antibodies prevents leukemia development in xenotransplantation models using patient-derived Ph+ ALL cells. Our results suggest that the association between IL7R and CXCR4 serves as molecular platform for BCR-ABL1-induced transformation and development of Ph+ ALL. Targeting this platform with anti-IL7R antibody eliminates Ph+ ALL cells including those with resistance to commonly used ABL1 kinase inhibitors. Thus, anti-IL7R antibodies may provide alternative treatment options for ALL in general and may suppress incurable drug-resistant leukemia forms.


Asunto(s)
Proteínas de Fusión bcr-abl/metabolismo , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptores CXCR4/metabolismo , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/efectos de los fármacos , Femenino , Proteína Forkhead Box O1/metabolismo , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-7/farmacología , Subunidad alfa del Receptor de Interleucina-7/antagonistas & inhibidores , Subunidad alfa del Receptor de Interleucina-7/genética , Ratones , Ratones Mutantes , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptores CXCR4/genética , Transducción de Señal/efectos de los fármacos
13.
Lancet Child Adolesc Health ; 4(3): 242-250, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31958415

RESUMEN

Leptomeningeal malignancy complicates childhood cancers, including leukaemias, brain tumours, and solid tumours. In leukaemia, such malignancy is thought to invade leptomeninges via the vascular route. In brain tumours, dissemination from the primary tumour, before or after surgery, via CSF pathways is assumed; however, evidence exists to support the vascular route of dissemination. Success in treating leptomeningeal malignancy represents a rate-limiting step to cure, which has been successfully overcome in leukaemia with intensified systemic therapy combined with intra-CSF therapy, which replaced cranial radiotherapy for many patients. This de-escalated CNS-directed therapy is still associated with some neurotoxicity. The balanced benefit justifies exploration of ways to further de-escalate CNS-directed therapy. For primary brain tumours, standard therapy is craniospinal radiotherapy, but attendant risk of acute and delayed brain injury and endocrine deficiencies compounds post-radiation impairment of spinal growth. Alternative ways of treating leptomeninges by intensifying drug therapy delivered to CSF are being investigated-preliminary evidence suggests improved outcomes. This Review seeks to describe methods of intra-CSF drug delivery and drugs in use, and consider how the technique could be modified and additional drugs might be selected for this route of administration.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/tendencias , Leucemia/tratamiento farmacológico , Neoplasias Meníngeas/tratamiento farmacológico , Encéfalo/efectos de la radiación , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/patología , Ensayos Clínicos como Asunto , Irradiación Craneoespinal/efectos adversos , Irradiación Craneoespinal/normas , Quimioterapia Combinada/métodos , Sistema Endocrino/efectos de la radiación , Humanos , Leucemia/complicaciones , Leucemia/patología , Neoplasias Meníngeas/irrigación sanguínea , Neoplasias Meníngeas/líquido cefalorraquídeo , Neoplasias Meníngeas/patología , Síndromes de Neurotoxicidad/epidemiología , Columna Vertebral/efectos de la radiación
14.
Nat Cancer ; 1(10): 998-1009, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33479702

RESUMEN

Metabolic reprogramming is a key hallmark of cancer, but less is known about metabolic plasticity of the same tumor at different sites. Here, we investigated the metabolic adaptation of leukemia in two different microenvironments, the bone marrow and the central nervous system (CNS). We identified a metabolic signature of fatty-acid synthesis in CNS leukemia, highlighting Stearoyl-CoA desaturase (SCD1) as a key player. In vivo SCD1 overexpression increases CNS disease, whilst genetic or pharmacological inhibition of SCD1 decreases CNS load. Overall, we demonstrated that leukemic cells dynamically rewire metabolic pathways to suit local conditions and that targeting these adaptations can be exploited therapeutically.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Estearoil-CoA Desaturasa , Sistema Nervioso Central/metabolismo , Humanos , Lipogénesis , Estearoil-CoA Desaturasa/genética , Microambiente Tumoral
15.
Paediatr Anaesth ; 30(1): 9-16, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31667903

RESUMEN

Nitrous oxide (N2 O) is frequently used for short anesthesia/analgesia in children undergoing painful or repetitive procedures. Children with acute lymphoblastic leukemia (ALL) require repeated lumbar punctures with direct instillation of intrathecal chemotherapy, usually the anti-folate agent methotrexate, during their treatment. These procedures are frequently performed under anesthesia. Concerns have been intermittently raised about a drug interaction between methotrexate and N2 O that may potentiate the undesirable side effects of methotrexate, including neurotoxicity. However, the clinical evidence consists mainly of isolated case reports leading to a lack of consensus among pediatric anesthetists about the relative risk benefits of using N2 O in children with ALL. In this article, we review the biochemical basis and scientific observations that suggest a significant interaction between N2 O and methotrexate due to their dual inhibition of the key enzyme methionine synthase. The possible role of this interaction in potentiating neurotoxicity in children with cancer is discussed, and arguments and counterarguments about the clinical significance of this largely theoretical relationship are explored. Following comprehensive review of all the available data, we make the case for the circumstantial evidence being sufficiently compelling to prompt a review of practice by pediatric anesthetists and call for a precautionary approach by avoiding the use of N2 O in children receiving concurrent methotrexate.


Asunto(s)
Interacciones Farmacológicas , Metotrexato/efectos adversos , Óxido Nitroso/efectos adversos , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/antagonistas & inhibidores , Anestésicos/farmacología , Niño , Humanos , Metotrexato/farmacología , Metotrexato/uso terapéutico , Síndromes de Neurotoxicidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Vitamina B 12
17.
Leukemia ; 33(4): 981-994, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30185934

RESUMEN

In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: Lin-Sca-1+c-kit+CD48-CD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence.


Asunto(s)
Aminoquinolinas/farmacología , Autofagia , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Neoplásicas/patología , Poliaminas/farmacología , Animales , Apoptosis , Proliferación Celular , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células Tumorales Cultivadas
20.
Paediatr Drugs ; 20(4): 293-301, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29850985

RESUMEN

Prophylactic eradication of central nervous system (CNS) leukaemia is the current standard of care in treating childhood acute lymphoblastic leukaemia (ALL). This is conventionally achieved through regular lumbar punctures with intrathecal injections of methotrexate into the cerebrospinal fluid (CSF). Ommaya reservoirs are subcutaneous implantable devices that provide a secure route of drug delivery into the CSF via an intraventricular catheter. They are an important alternative in cases where intrathecal injection via lumbar puncture is difficult. Among UK Paediatric Principal Treatment Centres for ALL we found considerable variation in methotrexate dosing when using an Ommaya reservoir. We review the current safety and theoretical considerations when using Ommaya reservoirs and evidence for methotrexate dose adjustments via this route. We conclude by summarising the pragmatic consensus decision to use 50% of the conventional intrathecal dose of methotrexate when it is administered via Ommaya reservoir in front-line ALL therapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Metotrexato/administración & dosificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Catéteres de Permanencia , Preescolar , Sistemas de Liberación de Medicamentos/instrumentación , Humanos , Infusiones Intraventriculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...