Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 14(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38786939

RESUMEN

The role of aromatic amino acids in peripheral protein membrane binding has been reported to involve cation-π interactions with choline lipids. In this study, we have investigated the interactions of the model pentapeptide Ac-WL-X-LL-OH (where X = L, Y, F, or W) with the phospholipid membrane using solid-state NMR. The effect of guest residue X on the peptide-lipid interactome was complementary to the seminal report on the interfacial hydrophobicity scale by Wimley and White. We found that the phospholipids retained a lamellar phase in the presence of each of the peptides with an aromatic X residue, whereas the Leu peptide perturbed the bilayer to an extent where an additional isotropic phase was observed. The solid-state NMR 13C and 31P data provide additional information on the influence of these short peptides on the membrane that has not been previously reported. The magnitude of membrane perturbation was in the order of guest residue X = L > Y~F > W, which is consistent with the relative amino acid interfacial affinity reported by Wimley and White. Further work is, however, required to uncover the behavior of the peptide and localization in the membrane domain due to ambiguity of the 13C NMR data. We have launched efforts in this regard for the objective of better understanding the role of aromatic amino acids in peripheral membrane protein binding.

2.
Biochem Biophys Res Commun ; 656: 23-29, 2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-36947963

RESUMEN

Lipids have been implicated in Parkinson's Disease (PD). We therefore studied the lipid profile of the neuroblastoma SH-SY5Y cell line, which is used extensively in PD research and compared it to that of the A431 epithelial cancer cell line. We have isolated whole cell extracts (WC) and plasma membrane (PM) fractions of both cell lines. The isolates were analyzed with 31P NMR. We observed a significant higher abundance of phosphatidylcholine (PC) for SH-SY5Y cells for both WC (55 ± 4.1%) and PM (63.3 ± 3.1%) compared to WC (40.5 ± 2.2%) and PM (43.4 ± 1.3%) of A431. Moreover, a higher abundance of phosphatidylethanolamine was detected for the WC of A431 compared to the SH-SY5Y. Using LC-MS/MS, we also determined the relative abundance of fatty acid (FA) moieties for each phospholipid class, finding that SH-SY5Y had high polyunsaturated FA levels, including arachidonic acid compared to A431 cells. When comparing our results to reported compositions of brain and neural tissues, we note the much higher PC levels, as well as very low levels of docosahexaenoic acid. However, relative levels of arachidonic acid and other polyunsaturated fatty acids were elevated, in line with what is desirable for a neural model system.


Asunto(s)
Neuroblastoma , Fosfolípidos , Humanos , Fosfatidilcolinas , Cromatografía Liquida , Neuroblastoma/metabolismo , Espectrometría de Masas en Tándem , Línea Celular Tumoral , Ácidos Grasos Insaturados , Ácido Araquidónico
3.
Insect Mol Biol ; 31(6): 810-820, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054587

RESUMEN

The protein vitellogenin (Vg) plays a central role in lipid transportation in most egg-laying animals. High Vg levels correlate with stress resistance and lifespan potential in honey bees (Apis mellifera). Vg is the primary circulating zinc-carrying protein in honey bees. Zinc is an essential metal ion in numerous biological processes, including the function and structure of many proteins. Measurements of Zn2+ suggest a variable number of ions per Vg molecule in different animal species, but the molecular implications of zinc-binding by this protein are not well-understood. We used inductively coupled plasma mass spectrometry to determine that, on average, each honey bee Vg molecule binds 3 Zn2+ -ions. Our full-length protein structure and sequence analysis revealed seven potential zinc-binding sites. These are located in the ß-barrel and α-helical subdomains of the N-terminal domain, the lipid binding site, and the cysteine-rich C-terminal region of unknown function. Interestingly, two potential zinc-binding sites in the ß-barrel can support a proposed role for this structure in DNA-binding. Overall, our findings suggest that honey bee Vg bind zinc at several functional regions, indicating that Zn2+ -ions are important for many of the activities of this protein. In addition to being potentially relevant for other egg-laying species, these insights provide a platform for studies of metal ions in bee health, which is of global interest due to recent declines in pollinator numbers.


Asunto(s)
Proteínas de Insectos , Vitelogeninas , Abejas , Animales , Vitelogeninas/metabolismo , Proteínas de Insectos/metabolismo , Zinc , Sitios de Unión , Lípidos
4.
Front Mol Biosci ; 9: 865194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755821

RESUMEN

Vitellogenin (Vg) is a phylogenetically broad glycolipophosphoprotein. A major function of this protein is holding lipid cargo for storage and transportation. Vg has been extensively studied in honey bees (Apis mellifera) due to additional functions in social traits. Using AlphaFold and EM contour mapping, we recently described the protein structure of honey bee Vg. The full-length protein structure reveals a large hydrophobic lipid binding site and a well-defined fold at the C-terminal region. Now, we outline a shielding mechanism that allows the C-terminal region of Vg to cover a large hydrophobic area exposed in the all-atom model. We propose that this C-terminal movement influences lipid molecules' uptake, transport, and delivery. The mechanism requires elasticity in the Vg lipid core as described for homologous proteins in the large lipid transfer protein (LLTP) superfamily to which Vg belongs. Honey bee Vg has, additionally, several structural arrangements that we interpret as beneficial for the functional flexibility of the C-terminal region. The mechanism proposed here may be relevant for the Vg molecules of many species.

5.
Front Mol Biosci ; 9: 763750, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495628

RESUMEN

The CW domain binds to histone tail modifications found in different protein families involved in epigenetic regulation and chromatin remodeling. CW domains recognize the methylation state of the fourth lysine on histone 3 and could, therefore, be viewed as a reader of epigenetic information. The specificity toward different methylation states such as me1, me2, or me3 depends on the particular CW subtype. For example, the CW domain of ASHH2 methyltransferase binds preferentially to H3K4me1, and MORC3 binds to both H3K4me2 and me3 modifications, while ZCWPW1 is more specific to H3K4me3. The structural basis for these preferential bindings is not well understood, and recent research suggests that a more complete picture will emerge if dynamical and energetic assessments are included in the analysis of interactions. This study uses fold assessment by NMR in combination with mutagenesis, ITC affinity measurements, and thermal denaturation studies to investigate possible couplings between ASHH2 CW selectivity toward H3K4me1 and the stabilization of the domain and loops implicated in binding. The key elements of the binding site-the two tryptophans and the α1-helix form and maintain the binding pocket- were perturbed by mutagenesis and investigated. Results show that the α1-helix maintains the overall stability of the fold via the I915 and L919 residues and that the correct binding consolidates the loops designated as η1 and η3, as well as the C-terminal. This consolidation is incomplete for H3K4me3 binding to CW, which experiences a decrease in overall thermal stability on binding. Loop mutations not directly involved in the binding site, nonetheless, affect the equilibrium positions of the key residues.

6.
FEBS Open Bio ; 12(1): 51-70, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34665931

RESUMEN

Vitellogenin (Vg) has been implicated as a central protein in the immunity of egg-laying animals. Studies on a diverse set of species suggest that Vg supports health and longevity through binding to pathogens. Specific studies of honey bees (Apis mellifera) further indicate that the vitellogenin (vg) gene undergoes selection driven by local pathogen pressures. Determining the complete 3D structure of full-length Vg (flVg) protein will provide insights regarding the structure-function relationships underlying allelic variation. Honey bee Vg has been described in terms of function, and two subdomains have been structurally described, while information about the other domains is lacking. Here, we present a structure prediction, restrained by experimental data, of flVg from honey bees. To achieve this, we performed homology modeling and used AlphaFold before using a negative-stain electron microscopy map to restrict, orient, and validate our 3D model. Our approach identified a highly conserved Ca2+ -ion-binding site in a von Willebrand factor domain that might be central to Vg function. Thereafter, we used rigid-body fitting to predict the relative position of high-resolution domains in a flVg model. This mapping represents the first experimentally validated full-length protein model of a Vg protein and is thus relevant for understanding Vg in numerous species. Our results are also specifically relevant to honey bee health, which is a topic of global concern due to rapidly declining pollinator numbers.


Asunto(s)
Proteínas de Insectos , Vitelogeninas , Animales , Abejas , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos/metabolismo , Longevidad , Vitelogeninas/genética , Vitelogeninas/metabolismo
7.
Molecules ; 26(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204651

RESUMEN

The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers. Here we express and purify double-labelled A-Cage-C and prepare partially deuterated bicelles as a membrane mimicking system. We investigate A-Cage-C in the presence and absence of these bicelles at non-binding (pH 7.0) and binding (pH 4.5) conditions. Using in silico analyses, NMR, conformational clustering, and Molecular Dynamics, we provide tentative insights into the conformations of bound and unbound A-Cage-C. The conformation of each state is dynamic and samples a large amount of overlapping conformational space. We identify one of the clusters as likely representing the binding conformation and conclude tentatively that the unfolding around the central W23 segment and its reorientation may be necessary for full intercalation at binding conditions (pH 4.5). We also see evidence for an overall elongation of A-Cage-C in the presence of model bilayers.


Asunto(s)
Proteína Oncogénica pp60(v-src)/química , Fragmentos de Péptidos/química , Péptidos/química , Lactalbúmina/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Membranas , Simulación de Dinámica Molecular , Proteína Oncogénica pp60(v-src)/metabolismo , Fragmentos de Péptidos/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica
8.
Artículo en Inglés | MEDLINE | ID: mdl-33992808

RESUMEN

The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2·5×) and phosphatidylglycerol (+100%, phosphatidylglycerol synthase increased 22×) over the G1/pre-replication phase boundary. The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. This study shows for the first time that there are considerable changes in the biosynthesis of the three most abundant phospholipid classes in the normal cell cycle of D. quadricauda, by margins large enough to elicit changes to the physical properties of membranes.


Asunto(s)
Ciclo Celular , Células Eucariotas/citología , Células Eucariotas/metabolismo , Fosfolípidos/biosíntesis , Colina/metabolismo , Metabolismo de los Lípidos
9.
FEBS J ; 288(6): 1887-1905, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32892498

RESUMEN

Dysregulation of the biosynthesis of cholesterol and other lipids has been implicated in many neurological diseases, including Parkinson's disease. Misfolding of α-synuclein (α-Syn), the main actor in Parkinson's disease, is associated with changes in a lipid environment. However, the exact molecular mechanisms underlying cholesterol effect on α-Syn binding to lipids as well as α-Syn oligomerization and fibrillation remain elusive, as does the relative importance of cholesterol compared to other factors. We probed the interactions and fibrillation behaviour of α-Syn using styrene-maleic acid nanodiscs, containing zwitterionic and anionic lipid model systems with and without cholesterol. Surface plasmon resonance and thioflavin T fluorescence assays were employed to monitor α-Syn binding, as well as fibrillation in the absence and presence of membrane models. 1 H-15 N-correlated NMR was used to monitor the fold of α-Syn in response to nanodisc binding, determining individual residue apparent affinities for the nanodisc-contained bilayers. The addition of cholesterol inhibited α-Syn interaction with lipid bilayers and, however, significantly promoted α-Syn fibrillation, with a more than a 20-fold reduction of lag times before fibrillation onset. When α-Syn bilayer interactions were analysed at an individual residue level by solution-state NMR, we observed two different effects of cholesterol. In nanodiscs made of DOPC, the addition of cholesterol modulated the NAC part of α-Syn, leading to stronger interaction of this region with the lipid bilayer. In contrast, in the nanodiscs comprising DOPC, DOPE and DOPG, the NAC part was mostly unaffected by the presence of cholesterol, while the binding of the N and the C termini was both inhibited.


Asunto(s)
Colesterol/química , Membrana Dobles de Lípidos/química , Nanoestructuras/química , Multimerización de Proteína , alfa-Sinucleína/química , Algoritmos , Benzotiazoles/química , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Maleatos/química , Lípidos de la Membrana/química , Microscopía de Fuerza Atómica , Unión Proteica , Estireno/química , Resonancia por Plasmón de Superficie , alfa-Sinucleína/metabolismo
10.
PLoS One ; 15(9): e0232442, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32956358

RESUMEN

Exosomes are vesicles involved in intercellular communication. Their membrane structure and core content is largely dependent on the cell of origin. Exosomes have been investigated both for their biological roles and their possible use as disease biomarkers and drug carriers. These potential technological applications require the rigorous characterization of exosomal blood brain barrier permeability and a description of their lipid bilayer composition. To achieve these goals, we have established a 3D static blood brain barrier system based on existing systems for liposomes and a complementary LC-MS/MS and 31P nuclear magnetic resonance methodology for the analysis of purified human plasma-derived exosome-like vesicles. Results show that the isolated vesicles pass the blood brain barrier and are taken up in endothelial cells. The compositional analysis revealed that the isolated vesicles are enriched in lyso phospholipids and do not contain phosphatidylserine. These findings deviate significantly from the composition of exosomes originating from cell culture, and may reflect active removal by macrophages that respond to exposed phosphahtidylserine.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Exosomas/química , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Animales , Astrocitos/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Modelos Biológicos , Ratas , Porcinos
11.
FEBS J ; 287(20): 4458-4480, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32083791

RESUMEN

Chromatin post-translational modifications are thought to be important for epigenetic effects on gene expression. Methylation of histone N-terminal tail lysine residues constitutes one of many such modifications, executed by families of histone lysine methyltransferase (HKMTase). One such protein is ASHH2 from the flowering plant Arabidopsis thaliana, equipped with the interaction domain, CW, and the HKMTase domain, SET. The CW domain of ASHH2 is a selective binder of monomethylation at lysine 4 on histone H3 (H3K4me1) and likely helps the enzyme dock correctly onto chromatin sites. The study of CW and related interaction domains has so far been emphasizing lock-key models, missing important aspects of histone-tail CW interactions. We here present an analysis of the ASHH2 CW-H3K4me1 complex using NMR and molecular dynamics, as well as mutation and affinity studies of flexible coils. ß-augmentation and rearrangement of coils coincide with changes in the flexibility of the complex, in particular the η1, η3 and C-terminal coils, but also in the ß1 and ß2 strands and the C-terminal part of the ligand. Furthermore, we show that mutating residues with outlier dynamic behaviour affect the complex binding affinity despite these not being in direct contact with the ligand. Overall, the binding process is consistent with conformational selection. We propose that this binding mechanism presents an advantage when searching for the correct post-translational modification state among the highly modified and flexible histone tails, and also that the binding shifts the catalytic SET domain towards the nucleosome. DATABASES: Structural data are available in the PDB database under the accession code 6QXZ. Resonance assignments for CW42 in its apo- and holo-forms are available in the BMRB database under the accession code 27251.


Asunto(s)
Arabidopsis/enzimología , N-Metiltransferasa de Histona-Lisina/química , Histonas/química , Sitios de Unión , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Procesamiento Proteico-Postraduccional
12.
Mar Drugs ; 18(2)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092956

RESUMEN

Marine sponges and soft corals have yielded novel compounds with antineoplastic and antimicrobial activities. Their mechanisms of action are poorly understood, and in most cases, little relevant experimental evidence is available on this topic. In the present study, we investigated whether agelasine D (compound 1) and three agelasine analogs (compound 2-4) as well as malonganenone J (compound 5), affect the physical properties of a simple lipid model system, consisting of dioleoylphospahtidylcholine and dioleoylphosphatidylethanolamine. The data indicated that all the tested compounds increased stored curvature elastic stress, and therefore, tend to deform the bilayer which occurs without a reduction in the packing stress of the hexagonal phase. Furthermore, lower concentrations (1%) appear to have a more pronounced effect than higher ones (5-10%). For compounds 4 and 5, this effect is also reflected in phospholipid headgroup mobility assessed using 31P chemical shift anisotropy (CSA) values of the lamellar phases. Among the compounds tested, compound 4 stands out with respect to its effects on the membrane model systems, which matches its efficacy against a broad spectrum of pathogens. Future work that aims to increase the pharmacological usefulness of these compounds could benefit from taking into account the compound effects on the fluid lamellar phase at low concentrations.


Asunto(s)
Alcaloides/química , Antozoos/metabolismo , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Poríferos/metabolismo , Purinas/química , Animales , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química
13.
ACS Omega ; 4(25): 21596-21603, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31867556

RESUMEN

Global lipid analysis still lags behind proteomics with respect to the availability of databases, experimental protocols, and specialized software. Determining the lipidome of cellular model systems in common use is of particular importance, especially when research questions involve lipids directly. In Parkinson's disease research, there is a growing awareness for the role of the biological membrane, where individual lipids may contribute to provoking α-synuclein oligomerisation and fibrillation. We present an analysis of the whole cell and plasma membrane lipid isolates of a neuroblastoma cell line, SH-SY5Y, a commonly used model system for research on this and other neurodegenerative diseases. We have used two complementary lipidomics methods. The relative quantities of PC, PE, SMs, CL, PI, PG, and PS were determined by 31P NMR. Fatty acid chain composition and their relative abundances within each phospholipid group were evaluated by liquid chromatography-tandem mass spectrometry. For this part of the analysis, we have developed and made available a set of Matlab scripts, LipMat. Our approach allowed us to observe several deviations of lipid abundances when compared to published reports regarding phospholipid analysis of cell cultures or brain matter. The most striking was the high abundance of PC (54.7 ± 1.9%) and low abundance of PE (17.8 ± 4.8%) and SMs (2.7 ± 1.2%). In addition, the observed abundance of PS was smaller than expected (4.7 ± 2.7%), similar to the observed abundance of PG (4.5 ± 1.8%). The observed fatty acid chain distribution was similar to the whole brain content with some notable differences: a higher abundance of 16:1 PC FA (17.4 ± 3.4% in PC whole cell content), lower abundance of 22:6 PE FA (15.9 ± 2.2% in plasma membrane fraction), and a complete lack of 22:6 PS FA.

14.
Sci Rep ; 8(1): 17345, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30478403

RESUMEN

Doxorubicin and paclitaxel, two hydrophobic chemotherapeutic agents, are used in cancer therapies. Presence of hydrophobic patches and a flexible fold could probably make α-Lactalbumin a suitable carrier for hydrophobic drugs. In the present study, a variety of thermodynamic, spectroscopic, computational, and cellular techniques were applied to assess α-lactalbumin potential as a carrier for doxorubicin and paclitaxel. According to isothermal titration calorimetry data, the interaction between α-lactalbumin and doxorubicin or paclitaxel is spontaneous and the K (M-1) value for the interaction of α-lactalbumin and paclitaxel is higher than that for doxorubicin. Differential scanning calorimetry and anisotropy results indicated formation of α-lactalbumin complexes with doxorubicin or paclitaxel. Furthermore, molecular docking and dynamic studies revealed that TRPs are not involved in α-Lac's interaction with Doxorubicin while TRP 60 interacts with paclitaxel. Based on Pace analysis to determine protein thermal stability, doxorubicin and paclitaxel induced higher and lower thermal stability in α-lactalbumin, respectively. Besides, fluorescence lifetime measurements reflected that the interaction between α-lactalbumin with doxorubicin or paclitaxel was of static nature. Therefore, the authors hypothesized that α-lactalbumin could serve as a carrier for doxorubicin and paclitaxel by reducing cytotoxicity and apoptosis which was demonstrated during our in vitro cell studies.


Asunto(s)
Doxorrubicina/química , Portadores de Fármacos/química , Lactalbúmina/química , Paclitaxel/química , Calorimetría/métodos , Rastreo Diferencial de Calorimetría , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dicroismo Circular , Doxorrubicina/farmacocinética , Portadores de Fármacos/efectos adversos , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Polarización de Fluorescencia , Humanos , Enlace de Hidrógeno , Lactalbúmina/administración & dosificación , Lactalbúmina/metabolismo , Simulación del Acoplamiento Molecular , Paclitaxel/farmacocinética , Estabilidad Proteica , Termodinámica
15.
Biomol NMR Assign ; 12(1): 215-220, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29453713

RESUMEN

The ASHH2 CW domain is responsible for recognizing the methylation state at lysine 4 of histone 3 N-terminal tails and implicated in the recruitment of the ASHH2 methyltransferase enzyme correctly to the histones. The ASHH2 CW domain binds H3 lysine motifs that can be either mono-, di-, or tri-methylated [ARTK(meX)QTAR, where X denotes the number of methylations], but binds strongest to monomethylated instances (Kd values reported in the range of 1 µm to 500 nM). Hoppmann et al. published the uncomplexed NMR structure of an ASHH2 CW domain in 2011. Here we document the assignment of a shortened ASHH2 CW construct, CW42, with similar binding affinity and better expression yields than the one used to solve the uncomplexed structure. We also perform 1H-15N HSQC-monitored titrations that document at which protein-peptide ratios the complex is saturated. Backbone resonance assignments are presented for this shortened ASHH2 CW domain alone and bound to an H3 histone tail mimicking peptide monomethylated on lysine 4 (ARTK(me1)QTAR). Likewise, the assignment was also performed for the protein in complex with the dimethylated (ARTK(me2)QTAR) and trimethylated (ARTK(me3)QTAR) peptide. Overall, these two latter situations displayed a similar perturbation of shifts as the mono-methylated instance. In the case of the monomethylated histone tail mimic, side-chain assignment of CW42 in this complex was performed and reported in addition to backbone assignment, in preparation of a future solution structure determination and dynamics characterization of the CW42-ARTK(me1)QTAR complex.


Asunto(s)
Histonas/química , Histonas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Metilación , Unión Proteica
16.
Sci Rep ; 7(1): 8012, 2017 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-28808346

RESUMEN

This paper reports that the abundances of endogenous cardiolipin and phosphatidylethanolamine halve during elongation of the Gram-positive bacterium Listeria innocua. The lyotropic phase behaviour of model lipid systems that describe these modulations in lipid composition indicate that the average stored curvature elastic stress of the membrane is reduced on elongation of the cell, while the fluidity appears to be maintained. These findings suggest that phospholipid metabolism is linked to the cell cycle and that changes in membrane composition can facilitate passage to the succeding stage of the cell cycle. This therefore suggests a means by which bacteria can manage the physical properties of their membranes through the cell cycle.


Asunto(s)
Ciclo Celular , Membrana Celular/metabolismo , Elasticidad , Listeria/metabolismo , Fluidez de la Membrana , Membrana Celular/química , Fosfolípidos/metabolismo
17.
Data Brief ; 12: 113-122, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28413816

RESUMEN

This article is related to http://dx.doi.org/10.1016/j.bbamem.2017.01.005 (Ø. Strømland, Ø.S. Handegård, M.L. Govasli, H. Wen, Ø. Halskau, 2017) [1]. In protein and polypeptide-membrane interaction studies, negatively charged lipids are often used as they are a known driver for membrane interaction. When using fluorescence spectroscopy and CD as indicators of polypeptide binding and conformational change, respectively, the effect of zwitterionic lipids only should be documented. The present data documents several aspects of how two engineered polypeptides (A-Cage-C and A-Lnk-C) derived from the membrane associating protein alpha-Lactalbumin affects and are affected by the presence of zwitterionic bilayers in the form of vesicles. We here document the behavior or the Cage and Lnk segments with respect to membrane interaction and their residual fold, using intrinsic tryptophan fluorescence assays. This data description also documents the coverage of solid-supported bilayers prepared by spin-coating mica using binary lipid mixes, a necessary step to ensure that AFM is performed on areas that are covered by lipid bilayers when performing experiments. Uncovered patches are detectable by both force curve measurements and height measurements. We tested naked mica׳s ability to cause aggregation as seen by AFM, and found this to be low compared to preparations containing negatively charged lipids. Work with lipids also carries the risk of chemical degradation taking place during vesicles preparation or other handling of the lipids. We therefor use 31P NMR to quantify the head-group content of commonly used commercial extracts before and after a standard protocol for vesicle production is applied.

18.
Biochim Biophys Acta Biomembr ; 1859(5): 1029-1039, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28069414

RESUMEN

Helix A and -C of α-lactalbumin, a loosely folded amphitropic protein, perturb lipid monolayers by the formation of amyloid pore-like structures. To investigate whether these helices are able to disrupt fully formed bilayers, we designed peptides comprised of Helix A and -C, and investigated their membrane-perturbing properties. The peptides, designated A-Cage-C and A-Lnk-C, were prepared with tryptophan sites in the helical and the spacer segments in order to monitor which part were involved in membrane association under given conditions. The peptides associate with and disrupt negatively charged bilayers in a pH-dependent manner and α-helical tendencies increased upon membrane association. Both helices and the spacer segment were involved in membrane binding in the case of A-Lnk-C, and there are indications that the two helixes act in synergy to affect the membrane. However, the helices and the spacer segment could not intercalate when present as A-Cage-C at neutral conditions. At acidic pH, both helices could intercalate, but not the central spacer segment. AFM performed on bilayers under aqueous conditions revealed oligomers formed by the peptides. The presence of bilayers and acidic pHs were both drivers for the formation of these, suggestive of models for peptide oligomerization where segments of the peptide are stacked in an electrostatically favorable manner by the surface. Of the two peptides, A-Lnk-C was the more prolific oligomerizer, and also formed amyloid-fibril like structures at acidic pH and elevated concentrations. Our results suggest the peptides perturb membranes not through pore-like structures, but possibly by a thinning mechanism.


Asunto(s)
Lactalbúmina/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Péptidos/química , Multimerización de Proteína , Concentración de Iones de Hidrógeno , Conformación Proteica en Hélice alfa
19.
J Clin Transl Res ; 2(1): 11-26, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30873457

RESUMEN

Neurodegenerative Protein Misfolding Diseases (PMDs), such as Alzheimer's (AD), Parkinson's (PD) and prion diseases, are generally difficult to diagnose before irreversible damage to the central nervous system damage has occurred. Detection of the misfolded proteins that ultimately lead to these conditions offers a means for providing early detection and diagnosis of this class of disease. In this review, we discuss recent developments surrounding protein misfolding diseases with emphasis on the cytotoxic oligomers implicated in their aetiology. We also discuss the relationship of misfolded proteins with biological membranes. Finally, we discuss how far techniques for providing early diagnoses for PMDs have advanced and describe promising clinical approaches. We conclude that antibodies with specificity towards oligomeric species of AD and PD and lectins with specificity for particular glycosylation, show promise. However, it is not clear which approach may yield a reliable clinical test first. Relevance for patients: Individuals suffering from protein misfolding diseases will likely benefit form earlier, less- or even non-invasive diagnosis techniques. The current state and possible future directions for these are subject of this review.

20.
J Mol Biol ; 427(19): 3177-87, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26297199

RESUMEN

Human α-lactalbumin made lethal to tumor cells (HAMLET) is a tumoricidal complex consisting of human α-lactalbumin and multiple oleic acids (OAs). OA has been shown to play a key role in the activity of HAMLET and its related complexes, generally known as protein-fatty acid (PFA) complexes. In contrast to what is known about the fate of the protein component of such complexes, information about what happens to OA during their action is still lacking. We monitored the membrane, OA and protein components of bovine α-lactalbumin complexed with OA (BLAOA; a HAMLET-like substance) and how they associate with each other. Using ultracentrifugation, we found that the OA and lipid components follow each other closely. We then firmly identify a transfer of OA from BLAOA to both artificial and erythrocyte membranes, indicating that natural cells respond similarly to BLAOA treatment as artificial membranes. Uncomplexed OA is unable to similarly affect membranes at the conditions tested, even at elevated concentrations. Thus, BLAOA can spontaneously transfer OA to a lipid membrane. After the interaction with the membrane, the protein is likely to have lost most or all of its OA. We suggest a mechanism for passive import of mainly uncomplexed protein into cells, using existing models for OA's effect on membranes. Our results are consistent with a membrane destabilization mediated predominantly by OA insertion being a significant contribution to PFA cytotoxicity.


Asunto(s)
Antineoplásicos/farmacocinética , Membrana Eritrocítica/metabolismo , Lactalbúmina/farmacocinética , Ácido Oléico/farmacocinética , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Bovinos , Permeabilidad de la Membrana Celular , Humanos , Lactalbúmina/administración & dosificación , Lactalbúmina/química , Modelos Moleculares , Ácido Oléico/administración & dosificación , Ácido Oléico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...