Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 13(11)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38002564

RESUMEN

This study explores how gait imagery (GI) influences lower-limb muscle activity with respect to posture and previous walking experience. We utilized surface electromyography (sEMG) in 36 healthy young individuals aged 24 (±1.1) years to identify muscle activity during a non-gait imagery task (non-GI), as well as GI tasks before (GI-1) and after the execution of walking (GI-2), with assessments performed in both sitting and standing postures. The sEMG was recorded on both lower limbs on the tibialis anterior (TA) and on the gastrocnemius medialis (GM) for all tested tasks. As a result, a significant muscle activity decrease was found in the right TA for GI-1 compared to GI-2 in both sitting (p = 0.008) and standing (p = 0.01) positions. In the left TA, the activity decreased in the sitting posture during non-GI (p = 0.004) and GI-1 (p = 0.009) in comparison to GI-2. No differences were found for GM. The subjective level of imagination difficulty improved for GI-2 in comparison to GI-1 in both postures (p < 0.001). Previous sensorimotor experience with real gait execution and sitting posture potentiate TA activity decrease during GI. These findings contribute to the understanding of neural mechanisms beyond GI.

2.
J Bodyw Mov Ther ; 29: 161-166, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35248266

RESUMEN

INTRODUCTION: The use of motor imagery (MI) has been shown to offer significant improvements in movement performance in sports, and is now receiving a lot of attention as a relatively new therapeutic approach which can be applied in rehabilitation. However, the effects of MI on the quality of movement is still unclear. This study explored the immediate effect of MI on reaching tasks in healthy subjects. METHODS: 17 healthy individuals (33 ± 8.2 years) participated in the study. Surface electromyography (sEMG) and inertial measurement units (IMU) were used to identify muscle activity and angular velocity in both upper limbs. Participants performed a reach task using their dominant and non-dominant arms at their most comfortable speed, they were then asked to imagine themselves performing the same reaching task, and finally they were asked to repeat the reaching task. RESULTS: Significant decreases were seen in the muscle activity between pre and post MI for Biceps Brachii, Anterior Deltoid and Triceps Brachii. In addition, a significant increase was seen in extension angular velocity post MI. DISCUSSION: The results indicate that the use of MI just after physical practice appears to have an immediate effect on the muscle activity and kinematics during a reaching task, which may suggest an improved quality of movement. CONCLUSION: This proof of concept study shows the potential for MI to improve the quality of performing reaching task and offers a possible therapeutic option for Stroke survivors and other neuromuscular disorders.


Asunto(s)
Brazo , Movimiento , Electromiografía , Voluntarios Sanos , Humanos , Movimiento/fisiología , Extremidad Superior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...