Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(7): 114492, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39002125

RESUMEN

In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown. Here, we show that Tof2 exhibits cell-cycle-regulated nucleolar delocalization and turnover. Depletion of the nuclear small ubiquitin-like modifier (SUMO) protease Ulp2 not only causes Tof2 polySUMOylation, nucleolar delocalization, and degradation but also leads to Cdc14 nucleolar release and activation. This outcome depends on polySUMOylation and the activity of downstream enzymes, including SUMO-targeted ubiquitin ligase and Cdc48/p97 segregase. We further developed a system to tether SUMO machinery to Tof2 and generated a SUMO-deficient tof2 mutant, and the results indicate that Tof2 polySUMOylation is necessary and sufficient for its nucleolar delocalization and degradation. Together, our work reveals a polySUMO-dependent mechanism that delocalizes Tof2 from the nucleolus to facilitate mitotic exit.


Asunto(s)
Nucléolo Celular , Mitosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sumoilación , Nucléolo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/metabolismo , Endopeptidasas/metabolismo , Proteína que Contiene Valosina/metabolismo
2.
Nat Struct Mol Biol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890552

RESUMEN

Smc5/6 is a member of the eukaryotic structural maintenance of chromosomes (SMC) family of complexes with important roles in genome maintenance and viral restriction. However, limited structural understanding of Smc5/6 hinders the elucidation of its diverse functions. Here, we report cryo-EM structures of the budding yeast Smc5/6 complex in eight-subunit, six-subunit and five-subunit states. Structural maps throughout the entire length of these complexes reveal modularity and key elements in complex assembly. We show that the non-SMC element (Nse)2 subunit supports the overall shape of the complex and uses a wedge motif to aid the stability and function of the complex. The Nse6 subunit features a flexible hook region for attachment to the Smc5 and Smc6 arm regions, contributing to the DNA repair roles of the complex. Our results also suggest a structural basis for the opposite effects of the Nse1-3-4 and Nse5-6 subcomplexes in regulating Smc5/6 ATPase activity. Collectively, our integrated structural and functional data provide a framework for understanding Smc5/6 assembly and function.

3.
Mol Biol Cell ; 34(10): ar97, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37405742

RESUMEN

The conserved chromosomal passenger complex (CPC) consists of Ipl1Aurora-B, Sli15INCENP, Bir1Survivin, and Nbl1Borealin, and localizes at the kinetochore/centromere to correct kinetochore attachment errors and to prevent checkpoint silencing. After anaphase entry, the CPC moves from the kinetochore/centromere to the spindle. In budding yeast, CPC subunit Sli15 is phosphorylated by both cyclin-dependent kinase (CDK) and Ipl1 kinase. Following anaphase onset, activated Cdc14 phosphatase reverses Sli15 phosphorylation imposed by CDK to promote CPC translocation. Although abolished Sli15 phosphorylation imposed by Ipl1 also causes CPC translocation, the regulation of Ipl1-imposed Sli15 phosphorylation remains unclear. In addition to Sli15, Cdc14 also dephosphorylates Fin1, a regulatory subunit of protein phosphatase 1 (PP1), to enable kinetochore localization of Fin1-PP1. Here, we present evidence supporting the notion that kinetochore-localized Fin1-PP1 likely reverses Ipl1-imposed Sli15 phosphorylation to promote CPC translocation from the kinetochore/centromere to the spindle. Importantly, premature Fin1 kinetochore localization or phospho-deficient sli15 mutation causes checkpoint defects in response to tensionless attachments, resulting in chromosome missegregation. In addition, our data indicate that reversion of CDK- and Ipl1-imposed Sli15 phosphorylation shows an additive effect on CPC translocation. Together, these results reveal a previously unidentified pathway to regulate CPC translocation, which is important for accurate chromosome segregation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Saccharomycetales/metabolismo , Centrómero/metabolismo , Cinetocoros/metabolismo , Huso Acromático/metabolismo , Fosforilación
4.
Nat Commun ; 13(1): 7179, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418314

RESUMEN

Smc5/6 is an evolutionarily conserved SMC complex with roles in DNA replication and repair, as well as in viral DNA restriction. Understanding its multiple functions has been hampered by a lack of mechanistic studies on how the Smc5/6 complex associates with different types of DNA. Here we address this question by simultaneously visualizing the behavior of Smc5/6 on three types of DNA, namely double-stranded (ds) DNA, single-stranded (ss) DNA, and junction DNA formed by juxtaposed ss- and dsDNA, using correlative single-molecule fluorescence and force microscopy. We find that Smc5/6 displays distinct behaviors toward different types of DNA, dynamically associating with dsDNA while stably binding to junction DNA. Mechanistically, both the Nse1-3-4 subcomplex and ATP binding enhance the complex's dsDNA association. In contrast, Smc5/6's assembly onto ssDNA emanating from junction DNA, which occurs even in the presence high-affinity ssDNA binders, is aided by Nse1-3-4, but not by ATP. Moreover, we show that Smc5/6 protects junction DNA stability by preventing ssDNA annealing. The multifaceted DNA association behaviors of Smc5/6 provide a framework for understanding its diverse functions in genome maintenance and viral DNA restriction.


Asunto(s)
Proteínas de Ciclo Celular , ADN Viral , Proteínas de Ciclo Celular/metabolismo , ADN Viral/genética , Replicación del ADN , ADN de Cadena Simple/genética , Adenosina Trifosfato
5.
Mol Biol Cell ; 32(22): ar36, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668760

RESUMEN

DNA replication stress activates the S-phase checkpoint that arrests the cell cycle, but it is poorly understood how cells recover from this arrest. Cyclin-dependent kinase (CDK) and protein phosphatase 2A (PP2A) are key cell cycle regulators, and Cdc55 is a regulatory subunit of PP2A in budding yeast. We found that yeast cells lacking functional PP2ACdc55 showed slow growth in the presence of hydroxyurea (HU), a DNA synthesis inhibitor, without obvious viability loss. Moreover, PP2A mutants exhibited delayed anaphase entry and sustained levels of anaphase inhibitor Pds1 after HU treatment. A DNA damage checkpoint Chk1 phosphorylates and stabilizes Pds1. We show that chk1Δ and mutation of the Chk1 phosphorylation sites in Pds1 largely restored efficient anaphase entry in PP2A mutants after HU treatment. In addition, deletion of SWE1, which encodes the inhibitory kinase for CDK or mutation of the Swe1 phosphorylation site in CDK (cdc28F19), also suppressed the anaphase entry delay in PP2A mutants after HU treatment. Our genetic data suggest that Swe1/CDK acts upstream of Pds1. Surprisingly, cdc55Δ showed significant suppression to the viability loss of S-phase checkpoint mutants during DNA synthesis block. Together, our results uncover a PP2A-Swe1-CDK-Chk1-Pds1 axis that promotes recovery from DNA replication stress.


Asunto(s)
Anafase/genética , Replicación del ADN/fisiología , Proteína Fosfatasa 2/metabolismo , Saccharomyces cerevisiae/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Replicación del ADN/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Hidroxiurea/farmacología , Microorganismos Modificados Genéticamente , Mutación , Fosforilación , Proteína Fosfatasa 2/genética , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Fase S/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Securina/genética , Securina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA