Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2303480, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421096

RESUMEN

Peptide-drug conjugates (PDCs) are a promising class of drug delivery systems that utilize covalently conjugated carrier peptides with therapeutic agents. PDCs offer several advantages over traditional drug delivery systems including enhanced target engagement, improved bioavailability, and increased cell permeability. However, the development of efficient transcellular peptides capable of effectively transporting drugs across biological barriers remains an unmet need. In this study, physicochemical criteria based on cell-penetrating peptides are employed to design transcellular peptides derived from an antimicrobial peptides library. Among the statistically designed transcellular peptides (SDTs), SDT7 exhibits higher skin permeability, faster kinetics, and improved cell permeability in human keratinocyte cells compared to the control peptide. Subsequently, it is found that 6-Paradol (PAR) exhibits inhibitory activity against phosphodiesterase 4, which can be utilized for an anti-inflammatory PDC. The transcellular PDC (SDT7-conjugated with PAR, named TM5) is evaluated in mouse models of psoriasis, exhibiting superior therapeutic efficacy compared to PAR alone. These findings highlight the potential of transcellular PDCs (TDCs) as a promising approach for the treatment of inflammatory skin disorders.

2.
Cancers (Basel) ; 15(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37568803

RESUMEN

Cannabidiol (CBD), a primary constituent in hemp and cannabis, exerts broad pharmacological effects against various diseases, including cancer. Additionally, cabozantinib, a potent multi-kinase inhibitor, has been approved for treating patients with advanced hepatocellular carcinoma (HCC). Recently, there has been an increase in research on combination therapy using cabozantinib to improve efficacy and safety when treating patients. Here, we investigated the effect of a combination treatment of cabozantinib and CBD on HCC cells. CBD treatment enhanced the sensitivity of HCC cells to cabozantinib-mediated anti-cancer activity by increasing cytotoxicity and apoptosis. Phospho-kinase array analysis demonstrated that the apoptotic effect of the combination treatment was mainly related to p53 phosphorylation regulated by endoplasmic reticulum (ER) stress when compared to other kinases. The inhibition of p53 expression and ER stress suppressed the apoptotic effect of the combination treatment, revealing no changes in the expression of Bax, Bcl-2, cleaved caspase-3, cleaved caspase-8, or cleaved caspase-9. Notably, the effect of the combination treatment was not associated with cannabinoid receptor 1 (CNR1) and the CNR2 signaling pathways. Our findings suggest that the combination therapy of cabozantinib and CBD provides therapeutic efficacy against HCC.

3.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047798

RESUMEN

Most studies related to hemp are focused on Cannabidiol (CBD) and Tetrahydrocannabinol (THC); however, up to 120 types of phytocannabinoids are present in hemp. Hemp leaves contain large amounts of Cannabidiolic acid (CBDA) and Tetrahydrocannabinolic acid (THCA), which are acidic variants of CBD and THC and account for the largest proportion of CBDA. In recent studies, CBDA exhibited anti-hyperalgesia and anti-inflammatory effects. THCA also showed anti-inflammatory and neuroprotective effects that may be beneficial for treating neurodegenerative diseases. CBDA and THCA can penetrate the blood-brain barrier (BBB) and affect the central nervous system. The purpose of this study was to determine whether CBDA and THCA ameliorate Alzheimer's disease (AD)-like features in vitro and in vivo. The effect of CBDA and THCA was evaluated in the Aß1-42-treated mouse model. We observed that Aß1-42-treated mice had more hippocampal Aß and p-tau levels, pathological markers of AD, and loss of cognitive function compared with PBS-treated mice. However, CBDA- and THCA-treated mice showed decreased hippocampal Aß and p-tau and superior cognitive function compared with Aß1-42-treated mice. In addition, CBDA and THCA lowered Aß and p-tau levels, alleviated calcium dyshomeostasis, and exhibited neuroprotective effects in primary neurons. Our results suggest that CBDA and THCA have anti-AD effects and mitigate memory loss and resilience to increased hippocampal Ca2+, Aß, and p-tau levels. Together, CBDA and THCA may be useful therapeutic agents for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Cannabidiol , Cannabinoides , Cannabis , Fármacos Neuroprotectores , Ratones , Animales , Dronabinol/farmacología , Dronabinol/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Péptidos beta-Amiloides , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología
4.
Nat Prod Res ; 37(1): 56-62, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34227447

RESUMEN

A facile new synthetic method for the preparation of a Type-A 1-arylnaphthalene lactone skeleton was developed and used to synthesise justicidin B and several derivatives. Key synthesis steps included Hauser-Kraus annulation of a phthalide intermediate and Suzuki-Miyaura cross coupling between a triflated naphthalene lactone intermediate and various potassium organotrifluoroborates. With two exceptions, the derivatives showed significant inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in mouse macrophages. Moreover, several compounds, including justicidin B, had marked cytotoxicity towards six human tumour cell lines.


Asunto(s)
Dioxolanos , Lignanos , Ratones , Animales , Humanos , Lignanos/farmacología , Línea Celular , Lactonas
5.
Nutrients ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501124

RESUMEN

Goat's beard (Aruncus dioicus var. kamtschaticus) is a traditional medicinal plant, widely used in Chinese and Korean traditional medicine because of its anti-inflammatory, anti-oxidant, antimicrobial, and anti-cancer activity. However, its effect on skin inflammatory diseases like psoriasis is unknown. The aim of this study was to investigate the therapeutic potency of A. dioicus extract (ADE) in in vitro and in vivo psoriasis models. ADE treatment significantly attenuated skin inflammation and improved skin integrity in imiquimod-treated mice by suppressing keratinocyte hyperproliferation, inhibiting the infiltration of immune cells, and downregulating the expression of psoriatic markers. Further, ADE treatment suppressed protein kinase B/mammalian target of rapamycin (Akt/mTOR) and Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) signaling in HaCaT cells. Overall, the application of ADE relieves psoriasis-like skin inflammation possibly by regulating the Akt/mTOR and JAK2/STAT3 signaling pathways, making it an effective alternative for psoriasis therapy.


Asunto(s)
Dermatitis , Psoriasis , Rosaceae , Ratones , Animales , Janus Quinasa 2 , Proteínas Proto-Oncogénicas c-akt , Modelos Animales de Enfermedad , Psoriasis/tratamiento farmacológico , Queratinocitos , Transducción de Señal , Piel , Serina-Treonina Quinasas TOR , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratones Endogámicos BALB C , Proliferación Celular , Mamíferos
6.
Microb Biotechnol ; 15(3): 832-843, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33729711

RESUMEN

Faecalibacterium prausnitzii (F. prausnitzii) is one of the most abundant bacteria in the human intestine, with its anti-inflammatory effects establishing it as a major effector in human intestinal health. However, its extreme sensitivity to oxygen makes its cultivation and physiological study difficult. F. prausnitzii produces butyric acid, which is beneficial to human gut health. Butyric acid is a short-chain fatty acid (SCFA) produced by the fermentation of carbohydrates, such as dietary fibre in the large bowel. The genes encoding butyryl-CoA dehydrogenase (BCD) and butyryl-CoA:acetate CoA transferase (BUT) in F. prausnitzii were cloned and expressed in E. coli to determine the effect of butyric acid production on intestinal health using DSS-induced colitis model mice. The results from the E. coli Nissle 1917 strain, expressing BCD, BUT, or both, showed that BCD was essential, while BUT was dispensable for producing butyric acid. The effects of different carbon sources, such as glucose, N-acetylglucosamine (NAG), N-acetylgalactosamine (NAGA), and inulin, were compared with results showing that the optimal carbon sources for butyric acid production were NAG, a major component of mucin in the human intestine, and glucose. Furthermore, the anti-inflammatory effects of butyric acid production were tested by administering these strains to DSS-induced colitis model mice. The oral administration of the E. coli Nissle 1917 strain, carrying the expression vector for BCD and BUT (EcN-BCD-BUT), was found to prevent DSS-induced damage. Introduction of the BCD expression vector into E. coli Nissle 1917 led to increased butyric acid production, which improved the strain's health-beneficial effects.


Asunto(s)
Colitis , Escherichia coli , Animales , Antiinflamatorios , Ácido Butírico/efectos adversos , Ácido Butírico/metabolismo , Carbono/metabolismo , Colitis/inducido químicamente , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , Ratones
7.
J Ginseng Res ; 45(1): 134-148, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437165

RESUMEN

BACKGROUND: Lung cancer has a high incidence worldwide, and most lung cancer-associated deaths are attributable to cancer metastasis. Although several medicinal properties of Panax ginseng Meyer have been reported, the effect of ginsenosides Rk1 and Rg5 on epithelial-mesenchymal transition (EMT) stimulated by transforming growth factor beta 1 (TGF- ß1) and self-renewal in A549 cells is relatively unknown. METHODS: We treated TGF-ß1 or alternatively Rk1 and Rg5 in A549 cells. We used western blot analysis, real-time polymerase chain reaction (qPCR), wound healing assay, Matrigel invasion assay, and anoikis assays to determine the effect of Rk1 and Rg5 on TGF-mediated EMT in lung cancer cell. In addition, we performed tumorsphere formation assays and real-time PCR to evaluate the stem-like properties. RESULTS: EMT is induced by TGF-ß1 in A549 cells causing the development of cancer stem-like features. Expression of E-cadherin, an epithelial marker, decreased and an increase in vimentin expression was noted. Cell mobility, invasiveness, and anoikis resistance were enhanced with TGF-ß1 treatment. In addition, the expression of stem cell markers, CD44, and CD133, was also increased. Treatment with Rk1 and Rg5 suppressed EMT by TGF-ß1 and the development of stemness in a dose-dependent manner. Additionally, Rk1 and Rg5 markedly suppressed TGF-ß1-induced metalloproteinase-2/9 (MMP2/9) activity, and activation of Smad2/3 and nuclear factor kappa B/extra-cellular signal regulated kinases (NF-kB/ERK) pathways in lung cancer cells. CONCLUSIONS: Rk1 and Rg5 regulate the EMT inducing TGF-ß1 by suppressing the Smad and NF-κB/ERK pathways (non-Smad pathway).

8.
Int J Biol Macromol ; 168: 474-485, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33290767

RESUMEN

Effective treatment choices to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited because of the absence of effective target-based therapeutics. The main object of the current research was to estimate the antiviral activity of cannabinoids (CBDs) against the human coronavirus SARS-CoV-2. In the presented research work, we performed in silico and in vitro experiments to aid the sighting of lead CBDs for treating the viral infections of SARS-CoV-2. Virtual screening was carried out for interactions between 32 CBDs and the SARS-CoV-2 Mpro enzyme. Afterward, in vitro antiviral activity was carried out of five CBDs molecules against SARS-CoV-2. Interestingly, among them, two CBDs molecules namely Δ9 -tetrahydrocannabinol (IC50 = 10.25 µM) and cannabidiol (IC50 = 7.91 µM) were observed to be more potent antiviral molecules against SARS-CoV-2 compared to the reference drugs lopinavir, chloroquine, and remdesivir (IC50 ranges of 8.16-13.15 µM). These molecules were found to have stable conformations with the active binding pocket of the SARS-CoV-2 Mpro by molecular dynamic simulation and density functional theory. Our findings suggest cannabidiol and Δ9 -tetrahydrocannabinol are possible drugs against human coronavirus that might be used in combination or with other drug molecules to treat COVID-19 patients.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Cannabinoides/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Antivirales/farmacocinética , Cannabidiol/química , Cannabidiol/farmacocinética , Cannabidiol/farmacología , Cannabinoides/química , Cannabinoides/farmacocinética , Simulación por Computador , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/efectos de los fármacos , Dronabinol/química , Dronabinol/farmacocinética , Dronabinol/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Técnicas In Vitro , Ligandos , Modelos Biológicos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/química
9.
Biomolecules ; 9(8)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382473

RESUMEN

Insulin plays a key role in glucose homeostasis and is hence used to treat hyperglycemia, the main characteristic of diabetes mellitus. Annulohypoxylon annulatum is an inedible ball-shaped wood-rotting fungus, and hypoxylon F is one of the major compounds of A. annulatum. The aim of this study is to evaluate the effects of hypoxylonol F isolated from A. annulatum on insulin secretion in INS-1 pancreatic ß-cells and demonstrate the molecular mechanisms involved. Glucose-stimulated insulin secretion (GSIS) values were evaluated using a rat insulin ELISA kit. Moreover, the expression of proteins related to pancreatic ß-cell metabolism and insulin secretion was evaluated using Western blotting. Hypoxylonol F isolated from A. annulatum was found to significantly enhance glucose-stimulated insulin secretion without inducing cytotoxicity. Additionally, hypoxylonol F enhanced insulin receptor substrate-2 (IRS-2) levels and activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway. Interestingly, it also modulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and pancreatic and duodenal homeobox 1 (PDX-1). Our findings showed that A. annulatum and its bioactive compounds are capable of improving insulin secretion by pancreatic ß-cells. This suggests that A. annulatum can be used as a therapeutic agent to treat diabetes.


Asunto(s)
Ascomicetos/química , Fluorenos/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Animales , Línea Celular , Fluorenos/aislamiento & purificación , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , PPAR gamma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo
10.
Bioorg Chem ; 90: 103053, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31220671

RESUMEN

We evaluated the protective effects of hypoxylonol C and 4,5,4',5'-tetrahydroxy-1,1'-binaphthyl (BNT) isolated from Annulohypoxylon annulatum on pancreatic ß-cell apoptosis, using the ß-cell toxin streptozotocin (STZ). Hypoxylonol C and BNT restored the STZ-induced decrease in INS-1 cell viability in a dose-dependent manner. In addition, treatment of INS-1 cells with 50 µM STZ resulted in an increase in apoptotic cell death, which was observed as annexin V fluorescence intensity. Apoptotic cell death was decreased by co-treatment with 100 µM hypoxylonol C and 100 µM BNT. Similarly, STZ caused a marked increase in the expression of cleaved caspase-8, caspase-3, Bax, and poly (ADP-ribose) polymerase (PARP), as well as a decrease in the expression of B-cell lymphoma 2 (Bcl-2), which was reversed by co-treatment with 100 µM hypoxylonol C and 100 µM BNT. These findings suggest that hypoxylonol C and BNT play an important role in protecting pancreatic ß-cells against apoptotic damage.


Asunto(s)
Fluorenos/farmacología , Naftoles/farmacología , Sustancias Protectoras/farmacología , Estreptozocina/toxicidad , Animales , Apoptosis/efectos de los fármacos , Ascomicetos/química , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Línea Celular Tumoral , Fluorenos/aislamiento & purificación , Células Secretoras de Insulina/efectos de los fármacos , Naftoles/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sustancias Protectoras/aislamiento & purificación , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
11.
Org Lett ; 21(10): 3554-3557, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31058517

RESUMEN

The first total synthesis of pactalactam was accomplished using substrate-controlled stereoselective aziridination and regioselective aziridine ring-opening to construct three continuous amino groups on an octasubstituted cyclopentane core. The cyclopentane framework was obtained by ring-closing metathesis and aldol coupling using a l-threonine-derived oxazoline compound. Cyclic urea formation, m-acetylphenyl group introduction by Chan-Lam coupling, and primary alcohol-selective acylation yielded the reported pactalactam structure. The presence of pactalactam in the fermentation broth of pactamycin-producing bacteria was also confirmed.


Asunto(s)
Alcoholes/química , Aziridinas/química , Ciclopentanos/química , Imidazolidinas/síntesis química , Pactamicina/síntesis química , Acilación , Imidazolidinas/química , Estructura Molecular , Pactamicina/química
12.
J Nat Prod ; 82(5): 1325-1330, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30958679

RESUMEN

The total synthesis of nocarbenzoxazoles F (1) and G (2), originally obtained from the marine-derived halophilic bacterial strain Nocardiopsis lucentensis DSM 44048, was achieved via a simple and versatile route involving microwave-assisted construction of a benzoxazole skeleton, followed by carbon-carbon bond formation with the corresponding aryl bromides. Unfortunately, the 1H and 13C NMR spectra of natural nocarbenzoxazole G did not agree with those of the synthesized compound. In particular, the spectra of the isolated and synthesized compounds showed considerable differences in the signals from the protons and carbons in the aryl group. The revised structure was validated by the total synthesis of the actual nocarbenzoxazole G (8c) molecule, which is a regioisomer of the compound that was reported earlier as nocarbenzoxazole G. The synthesized derivatives showed specific cytotoxicity to the human cervical carcinoma cell line, HeLa, but did not have any remarkable effect on the other cell lines.


Asunto(s)
Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Benzoxazoles/química , Benzoxazoles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células HeLa , Humanos , Estructura Molecular , Nocardia , Resonancia Magnética Nuclear Biomolecular
13.
Bioorg Med Chem Lett ; 29(3): 400-405, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30594431

RESUMEN

To increase the contents of medicinally effective ginsenosides, we used high-temperature and high-pressure thermal processing of ginseng by exposing it to microwave irradiation. To determine the anti-melanoma effect, the malignant melanoma SK-MEL-2 cell line was treated with an extract of microwave-irradiated ginseng. Microwave irradiation caused changes in the ginsenoside contents: the amounts of ginsenosides Rg1, Re, Rb1, Rb2, Rc, and Rd were disappeared, while those of less polar ginsenosides, such as Rg3, Rg5, and Rk1, were increased. In particular, the contents of Rk1 and Rg5 markedly increased. Melanoma cells treated with the microwave-irradiated ginseng extract showed markedly increased cell death. The results indicate that the microwave-irradiated ginseng extract induced melanoma cell death via the apoptotic pathway and that the cytotoxic effect of the microwave-irradiated ginseng extract is attributable to the increased contents of specific ginsenosides.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Ginsenósidos/farmacología , Melanoma/tratamiento farmacológico , Microondas , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ginsenósidos/química , Ginsenósidos/aislamiento & purificación , Glicosilación , Humanos , Melanoma/patología , Estructura Molecular , Panax/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Relación Estructura-Actividad
14.
RSC Adv ; 9(5): 2493-2497, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35520509

RESUMEN

An efficient method was developed for the synthesis of unsymmetrical N-arylsulfamides using sulfamoyl azides and arylboronic acids in the presence of 10 mol% of copper chloride as the catalyst. The reaction was facilitated in MeOH in an open flask at room temperature. Unlike the coupling of sulfamides and boronic acids, the use of sulfamoyl azides was found to be beneficial with respect to the yield and reaction time.

15.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463303

RESUMEN

Shiunko ointment is composed of five ingredients including Lithospermi Radix (LR), Angelicae Gigantis Radix, sesame seed oil, beeswax, and swine oil. It is externally applied as a treatment for a wide range of skin conditions such as eczema, psoriasis, hair loss, burns, topical wounds, and atopic dermatitis. Deoxyshikonin is the major angiogenic compound extracted from LR. In this study, we investigated the efficacy of LR extract and deoxyshikonin on impaired wound healing in streptozotocin (STZ)-induced diabetic mice. Treatment with LR extract elevated tube formation in human umbilical vein endothelial cells (HUVECs) and exerted antioxidant activity. An open skin wound was produced on the backs of diabetic mice and was then topically treated with deoxyshikonin or vehicle. In addition, deoxyshikonin promoted tube formation in high glucose conditions exposed to HUVECs, and which may be regulated by increased VEGFR2 expression and phosphorylation of Akt and p38. Our results demonstrate that deoxyshikonin application promoted wound repair in STZ-induced diabetic mice. Collectively, these data suggest that deoxyshikonin is an active ingredient of LR, thereby contributing to wound healing in patients with diabetes.


Asunto(s)
Diabetes Mellitus Experimental/patología , Naftoquinonas/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lithospermum/química , Masculino , Ratones , Ratones Endogámicos ICR , Neovascularización Fisiológica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-30211127

RESUMEN

Candida albicans is an opportunistic pathogen and responsible for candidiasis. C. albicans readily forms biofilms on various biotic and abiotic surfaces, and these biofilms can cause local and systemic infections. C. albicans biofilms are more resistant than its free yeast to antifungal agents and less affected by host immune responses. Transition of yeast cells to hyphal cells is required for biofilm formation and is believed to be a crucial virulence factor. In this study, six components of ginger were investigated for antibiofilm and antivirulence activities against a fluconazole-resistant C. albicans strain. It was found 6-gingerol, 8-gingerol, and 6-shogaol effectively inhibited biofilm formation. In particular, 6-shogaol at 10 µg/ml significantly reduced C. albicans biofilm formation but had no effect on planktonic cell growth. Also, 6-gingerol and 6-shogaol inhibited hyphal growth in embedded colonies and free-living planktonic cells, and prevented cell aggregation. Furthermore, 6-gingerol and 6-shogaol reduced C. albicans virulence in a nematode infection model without causing toxicity at the tested concentrations. Transcriptomic analysis using RNA-seq and qRT-PCR showed 6-gingerol and 6-shogaol induced several transporters (CDR1, CDR2, and RTA3), but repressed the expressions of several hypha/biofilm related genes (ECE1 and HWP1), which supported observed phenotypic changes. These results highlight the antibiofilm and antivirulence activities of the ginger components, 6-gingerol and 6-shogaol, against a drug resistant C. albicans strain.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Catecoles/farmacología , Alcoholes Grasos/farmacología , Hifa/efectos de los fármacos , Animales , Antifúngicos/administración & dosificación , Antifúngicos/efectos adversos , Biopelículas/crecimiento & desarrollo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/microbiología , Candida albicans/crecimiento & desarrollo , Candidiasis/tratamiento farmacológico , Candidiasis/patología , Catecoles/administración & dosificación , Catecoles/efectos adversos , Catecoles/aislamiento & purificación , Modelos Animales de Enfermedad , Alcoholes Grasos/administración & dosificación , Alcoholes Grasos/efectos adversos , Alcoholes Grasos/aislamiento & purificación , Zingiber officinale/química , Hifa/crecimiento & desarrollo , Análisis de Supervivencia , Virulencia/efectos de los fármacos
17.
J Agric Food Chem ; 66(18): 4652-4659, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29659255

RESUMEN

Panax ginseng Meyer has been used for the treatment of immune diseases and for strengthening the immune function. In this study, we evaluated the innate immune-stimulating functions and action mechanisms of white ginseng (WG) and heat-processed ginseng (HPG) in RAW264.7 cells. According to LC-MS analysis results, WG contained typical ginsenosides, such as Rb1, Rc, Rb2, Rd, and Rg1, whereas HPG contained Rg3, Rk1, and Rg5 as well as typical ginsenosides. HPG, not WG, enhanced NF-κB transcriptional activity, cytokine production (IL-6 and TNF-α), and MHC class I and II expression in RAW264.7 cells. In addition, HPG phosphorylated MAPKs and NF-kB pathways. In experiments with inhibitors, the ERK inhibitor completely suppressed the effect of HPG on IL-6 and TNF-α production. HPG-induced c-Jun activation was suppressed by an ERK inhibitor and partially suppressed by JNK, p38, and IκBα inhibitors. Collectively, these results suggested that HPG containing Rg3, Rg5, and Rk1 increased macrophage activation which was regulated by the ERK/c-Jun pathway in RAW264.7 cells.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/farmacología , Panax/química , Extractos Vegetales/farmacología , Animales , Cromatografía Líquida de Alta Presión , Culinaria , Calor , Factores Inmunológicos/química , Interleucina-6/genética , Interleucina-6/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , FN-kappa B/genética , FN-kappa B/inmunología , Extractos Vegetales/química , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
18.
Int J Mol Sci ; 19(4)2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29565817

RESUMEN

Although cisplatin is the standard platinum-based anticancer drug used to treat various solid tumors, it can cause damage in normal kidney cells. Protective strategies against cisplatin-induced nephrotoxicity are, therefore, clinically important and urgently required. To address this challenge, we investigated the renoprotective effects of Hypoxylontruncatum, a ball-shaped wood-rotting fungus. Chemical investigation of the active fraction from the methanol extract of H.truncatum resulted in the isolation and identification of the renoprotective compounds, hypoxylonol C and F, which ameliorated cisplatin-induced nephrotoxicity to approximately 80% of the control value at 5 µM. The mechanism of this effect was further investigated using hypoxylonol F, which showed a protective effect at the lowest concentration. Upregulated phosphorylation of p38, extracellular signal-regulated kinases, and c-Jun N-terminal kinases following cisplatin treatment were markedly decreased after pre-treatment with hypoxylonol F. In addition, the protein expression level of cleaved caspase-3 was significantly reduced after co-treatment with hypoxylonol F. These results show that blocking the mitogen-activated protein kinase signaling cascade plays a critical role in mediating the renoprotective effect of hypoxylonol F isolated from H.truncatum fruiting bodies.


Asunto(s)
Agaricales/química , Cisplatino/farmacología , Fluorenos/farmacología , Animales , Células LLC-PK1 , Fosforilación/efectos de los fármacos , Porcinos
19.
Bioorg Med Chem Lett ; 27(14): 3156-3161, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28552338

RESUMEN

Guggulsterone derivatives were prepared using [3+2] click chemistry with aryl and alkyl acetylene. The series of derivatives were evaluated for their cellular protective effects on cisplatin-treated cultured LLC-PK1 kidney epithelial cells. Among the guggulsterone-triazole derivatives, compound 6g, which contains a hydroxyl methyl group, was the most active of all the derivatives. In an additional study, we determined that inhibition of the mitogen-activated protein kinase/caspase-3 signaling cascade by 6g mediates its protective effects against cytotoxicity in cultured LLC-PK1 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Pregnenodionas/química , Sustancias Protectoras/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Caspasa 3/química , Caspasa 3/metabolismo , Cisplatino/farmacología , Química Clic , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Células LLC-PK1 , Microscopía , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Pregnenodionas/farmacología , Sustancias Protectoras/química , Transducción de Señal/efectos de los fármacos , Porcinos
20.
Bioorg Med Chem Lett ; 27(4): 1081-1088, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28110870

RESUMEN

The epithelial-mesenchymal transition (EMT) is an important cellular process during which polarized epithelial cells become motile mesenchymal cells, which promote cancer metastasis. Ginger, the rhizome of Zingiber officinale, is extensively used in cooking worldwide and also as a traditional medicinal herb with antioxidant, anti-inflammatory and anticancer properties. Several pungent compounds have been identified in ginger, including zingerone, which has anticancer potential. However, the role of zingerone in EMT is unclear. We investigated the synergistic effect of zingerone and its derivative on EMT. Transforming growth factor-beta 1 (TGF-ß1) induces the EMT to promote hepatocellular carcinoma metastasis, including migration and invasion. To understand the repressive role of the combination of zingerone and its derivative (ZD 2) in hepatocellular carcinoma metastasis, we investigated the potential use of each compound of ginger, such as zingerone, ZD 2 and 6-shogaol, or the mixture of zingerone and ZD 2 (ZD 2-1) as inhibitors of TGF-ß1 induced EMT development in SNU182 hepatocellular carcinoma cells in vitro. We show that ZD 2-1, but not zingerone, ZD 2 and 6-shogaol significantly increased expression of the epithelial marker E-cadherin and repressed Snail upregulation and expression of the mesenchymal marker N-cadherin during initiation of the TGF-ß1 induced EMT. In addition, ZD 2-1 inhibited the TGF-ß1 induced increase in cell migration and invasion of SNU182 hepatocellular carcinoma cells. Furthermore, ZD 2-1 significantly inhibited TGF-ß1 regulated matrix metalloproteinase-2/9 and activation of Smad2/3. We also found that ZD 2-1 inhibited nuclear translocation of NF-κB, activation of p42/44 MAPK/AP1 signaling pathway in the TGF-ß1 induced EMT. Our findings provide new evidence that combined treatment with ZD 2, novel zingerone derivative, and zingerone synergistically suppresses hepatocellular carcinoma metastasis in vitro by inhibiting the TGF-ß1 induced EMT.


Asunto(s)
Carcinoma Hepatocelular/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Guayacol/análogos & derivados , Neoplasias Hepáticas/patología , Invasividad Neoplásica/prevención & control , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Línea Celular Tumoral , Sinergismo Farmacológico , Transición Epitelial-Mesenquimal/fisiología , Guayacol/química , Guayacol/farmacología , Humanos , Factor de Crecimiento Transformador beta1/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...