Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chem Sci ; 14(43): 12345-12354, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969574

RESUMEN

A mixture of N,N,N'-trisubstituted thiourea and cyclic N,N,N',N'-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS1-xSex nanoplatelets in a single synthetic step. The microstructure of the nanoplatelets could be tuned from homogeneous alloys, to graded alloys to core/crown heterostructures depending on the relative conversion reactivity of the sulfur and selenium precursors. UV-visible absorption and photoluminescence spectroscopy and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) images demonstrate that the elemental distribution is governed by the relative precursor conversion kinetics. Slow conversion kinetics produced nanoplatelets with larger lateral dimensions, behavior that is characteristic of precursor conversion limited growth kinetics. Across a 10-fold range of reactivity, CdS nanoplatelets have 4× smaller lateral dimensions than CdSe nanoplatelets grown under identical conversion kinetics. The difference in size is consistent with a rate of CdSe growth that is 4× greater than the rate of CdS. The influence of the relative sulfide and selenide growth rates, the duration of the nucleation phase, and the solute composition on the nanoplatelet microstructure are discussed.

2.
RSC Adv ; 13(21): 14484-14493, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37188250

RESUMEN

Colloidal covalent organic framework (COF) synthesis enables morphological control of crystallite size and shape. Despite numerous examples of 2D COF colloids with various linkage chemistries, 3D imine-linked COF colloids are more challenging synthetic targets. Here we report a rapid (15 min-5 day) synthesis of hydrated COF-300 colloids ranging in length (251 nm-4.6 µm) with high crystallinity and moderate surface areas (150 m2 g-1). These materials are characterized by pair distribution function analysis, which is consistent with the known average structure for this material alongside different degrees of atomic disorder at different length scales. Additionally, we investigate a series of para-substituted benzoic acid catalysts, finding that 4-cyano and 4-fluoro substituted benzoic acids produce the largest COF-300 crystallites with lengths of 1-2 µm. In situ dynamic light scattering experiments are used to assess time to nucleation in conjunction with 1H NMR model compound studies to probe the impact of catalyst acidity on the imine condensation equilibrium. We observe cationically stabilized colloids with a zeta potential of up to +14.35 mV in benzonitrile as a result of the carboxylic acid catalyst protonating surface amine groups. We leverage these surface chemistry insights to synthesize small COF-300 colloids using sterically hindered diortho-substituted carboxylic acid catalysts. This fundamental study of COF-300 colloid synthesis and surface chemistry will provide new insights into the role of acid catalysts both as imine condensation catalysts and as colloid stabilizing agents.

3.
J Am Chem Soc ; 144(43): 19813-19824, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36265086

RESUMEN

Two-dimensional (2D) covalent organic frameworks (COFs) are composed of structurally precise, permanently porous, layered macromolecular sheets, which are traditionally synthesized as polycrystalline solids with crystalline domain lengths smaller than 100 nm. Here, we polymerize imine-linked 2D COFs as suspensions of faceted single crystals in as little as 5 min at moderate temperature and ambient pressure. Single crystals of two imine-linked 2D COFs were prepared, consisting of a rhombic 2D COF (TAPPy-PDA) and a hexagonal 2D COF (TAPB-DMPDA). The sizes of TAPPy-PDA and TAPB-DMPDA crystals were tuned from 720 nm to 4 µm and 450 nm to 20 µm in width, respectively. High-resolution transmission electron microscopy revealed that the COF crystals consist of layered, 2D polymers comprising single-crystalline domains. Continuous rotation electron diffraction resolved the unit cell and crystal structure of both COFs, which are single-crystalline in the a-b plane but disordered in the stacking c dimension. Single crystals of both COFs were incorporated into gas chromatography separation columns and exhibited unusual selective retention of cyclohexane over benzene, with single-crystalline TAPPy-PDA significantly outperforming single-crystalline TAPB-DMPDA. Polycrystalline TAPPy-PDA exhibited no separation, while polycrystalline TAPB-DMPDA exhibited poor separation and the opposite order of elution, retaining benzene more than cyclohexane, indicating the importance of improved material quality for COFs to exhibit properties that derive from their precise, crystalline structures. This work represents the first example of synthesizing imine-linked 2D COF single crystals at ambient pressure and short reaction times and demonstrates the promise of high-quality COFs for molecular separations.

4.
Chem Rev ; 122(6): 6322-6373, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35133803

RESUMEN

Transforming how plastics are made, unmade, and remade through innovative research and diverse partnerships that together foster environmental stewardship is critically important to a sustainable future. Designing, preparing, and implementing polymers derived from renewable resources for a wide range of advanced applications that promote future economic development, energy efficiency, and environmental sustainability are all central to these efforts. In this Chemical Reviews contribution, we take a comprehensive, integrated approach to summarize important and impactful contributions to this broad research arena. The Review highlights signature accomplishments across a broad research portfolio and is organized into four wide-ranging research themes that address the topic in a comprehensive manner: Feedstocks, Polymerization Processes and Techniques, Intended Use, and End of Use. We emphasize those successes that benefitted from collaborative engagements across disciplinary lines.


Asunto(s)
Polímeros , Polímeros/química
5.
Chem Rev ; 122(1): 442-564, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34852192

RESUMEN

Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.


Asunto(s)
Polímeros , Sustancias Macromoleculares/química , Polimerizacion , Polímeros/química
6.
ACS Appl Mater Interfaces ; 13(32): 38680-38687, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34369767

RESUMEN

Relative to other additive manufacturing modalities, vat photopolymerization (VP) offers designers superior surface finish, feature resolution, and throughput. However, poor interlayer network formation can limit a VP-printed part's tensile strength along the build axis. We demonstrate that the incorporation of carbamate bonds capable of undergoing dissociative exchange reactions provides improved interlayer network formation in VP-printed urethane acrylate polymers. In the presence of dibutyltin dilaurate catalyst, the exchange of these carbamate bonds enables rapid stress relaxation with an activation energy of 133 kJ/mol, consistent with a dissociative bond exchange process. Annealed XY tensile samples containing a catalyst demonstrate a 25% decrease in Young's modulus, attributed to statistical changes in network topology, while samples without a catalyst show no observable effect. Annealed ZX tensile samples printed with layers perpendicular to tensile load demonstrate an increase in elongation at break, indicative of self-healing. The strain at break for samples containing a catalyst increases from 33.9 to 56.0% after annealing but decreases from 48.1 to 32.1% after annealing in samples without a catalyst. This thermally activated bond exchange process improves the performance of VP-printed materials via self-healing across layers and provides a means to change Young's modulus after printing. Thus, the incorporation of carbamate bonds and appropriate catalysts in the VP-printing process provides a robust platform for enhancing material properties and performance.

7.
ACS Appl Mater Interfaces ; 13(10): 12191-12197, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33682411

RESUMEN

We report the color conversion performance of amber and red emitting quantum dots (QDs) on InGaN solid-state lighting (SSL) light emitting diode (LED) packages. Spherical quantum well (SQW) architectures (CdS/CdSe1-xSx/CdS) were prepared using a library of thio- and selenourea synthesis reagents and high throughput synthesis robotics. CdS/CdSe1-xSx QDs with narrow luminescence bands were coated with thick CdS shells (thickness = 1.6-7.5 nm) to achieve photoluminescence quantum yields (PLQY) up to 88% at amber and red emission wavelengths (λmax = 600-642 nm, FWHM < 45 nm). The photoluminescence from SQWs encapsulated in silicone and deposited on LED packages was monitored under accelerated aging conditions (oven temperature = 85 °C, relative humidity = 5-85%, blue optical power density = 3-45 W/cm2) by monitoring the red photon output over several hundred hours of continuous operation. The growth of a ZnS shell on the SQW surface increases the stability under long-term operation but also reduces the PLQY, especially of SQWs with thick CdS shells. The results illustrate that the outer ZnS shell layer is key to optimizing the PLQY and the long-term stability of QDs during operation on SSL packages.

8.
Chem Sci ; 12(48): 16014-16022, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35024124

RESUMEN

Mechanistic understanding into the formation and growth of imine-linked two-dimensional (2D) covalent organic frameworks (COFs) is needed to improve their materials quality and access larger crystallite sizes, both of which limit the promise of 2D COFs and 2D polymerization techniques. Here we report a previously unknown temperature-dependent depolymerization of colloidal 2D imine-linked COFs, which offers a new means to improve their crystallinity. 2D COF colloids form at room temperature but then depolymerize when their reaction mixtures are heated to 90 °C. As the solutions are cooled back to room temperature, the 2D COFs repolymerize and crystallize with improved crystallinity and porosity, as characterized by X-ray diffraction, infrared spectroscopy and N2 porosimetry. The evolution of COF crystallinity during the solvothermal depolymerization and repolymerization processes was characterized by in situ wide angle X-ray scattering, and the concentrations of free COF monomers as a function of temperature were quantified by variable temperature 1H NMR spectroscopy. The ability of a 2D COF to depolymerize under these conditions depends on both the identity of the COF and its initial materials quality. For one network formed at room temperature (TAPB-PDA COF), a first depolymerization process is nearly complete, and the repolymerization yields materials with dramatically enhanced crystallinity and surface area. Already recrystallized materials partially depolymerize upon heating their reaction mixtures a second time. A related 2D COF (TAPB-DMTA COF) forms initially with improved crystallinity compared to TAPB-PDA COF and then partially depolymerizes upon heating. These results suggest that both high materials quality and network-dependent properties, such as interlayer interaction strength, influence the extent to which 2D COFs resist depolymerization. These findings offer a new means to recrystallize or solvent anneal 2D COFs and may ultimately inform crystallization conditions for obtaining large-area imine-linked two-dimensional polymers from solution.

9.
ACS Nanosci Au ; 1(1): 6-14, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37102118

RESUMEN

The Primarily Undergraduate Nanomaterials Cooperative (PUNC) is an organization for research-active faculty studying nanomaterials at Primarily Undergraduate Institutions (PUIs), where undergraduate teaching and research go hand-in-hand. In this perspective, we outline the differences in maintaining an active research group at a PUI compared to an R1 institution. We also discuss the work of PUNC, which focuses on community building, instrument sharing, and facilitating new collaborations. Currently consisting of 37 members from across the United States, PUNC has created an online community consisting of its Web site (nanocooperative.org), a weekly online summer group meeting program for faculty and students, and a Discord server for informal conversations. Additionally, in-person symposia at ACS conferences and PUNC-specific conferences are planned for the future. It is our hope that in the years to come PUNC will be seen as a model organization for community building and research support at primarily undergraduate institutions.

10.
ACS Cent Sci ; 6(6): 921-927, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32607439

RESUMEN

Cross-linked polyurethane (PU) is extensively used as thermoset foam; however, methods to directly reprocess PU foam waste derived from commercial sources into similar value materials have not been developed. We demonstrate that introducing dibutyltin dilaurate (DBTDL) into cross-linked PU foams and films enables their reprocessing at elevated temperatures via dynamic carbamate exchange reactions. Both model and commercial cross-linked PU foams were continuously reprocessed using twin-screw extrusion to remove gaseous filler and produce PU filaments or films with elastomeric or rigid thermoset mechanical properties. The properties of microcompounded model PU foam were in excellent agreement with PU film synthesized using the same monomers, indicating that this process occurs efficiently. These findings will enable the bulk reprocessing of commercial thermoset PU waste and inspire the further development of reprocessing methods for other thermosets and the compatibilization of chemically distinct cross-linked materials.

11.
Chem Sci ; 10(26): 6539-6552, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31367306

RESUMEN

We report a method to control the composition and microstructure of CdSe1-x S x nanocrystals by the simultaneous injection of sulfide and selenide precursors into a solution of cadmium oleate and oleic acid at 240 °C. Pairs of substituted thio- and selenoureas were selected from a library of compounds with conversion reaction reactivity exponents (k E) spanning 1.3 × 10-5 s-1 to 2.0 × 10-1 s-1. Depending on the relative reactivity (k Se/k S), core/shell and alloyed architectures were obtained. Growth of a thick outer CdS shell using a syringe pump method provides gram quantities of brightly photoluminescent quantum dots (PLQY = 67 to 90%) in a single reaction vessel. Kinetics simulations predict that relative precursor reactivity ratios of less than 10 result in alloyed compositions, while larger reactivity differences lead to abrupt interfaces. CdSe1-x S x alloys (k Se/k S = 2.4) display two longitudinal optical phonon modes with composition dependent frequencies characteristic of the alloy microstructure. When one precursor is more reactive than the other, its conversion reactivity and mole fraction control the number of nuclei, the final nanocrystal size at full conversion, and the elemental composition. The utility of controlled reactivity for adjusting alloy microstructure is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...