Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36838080

RESUMEN

This article presents the circularly polarized antenna operating over 28 GHz mm-wave applications. The suggested antenna has compact size, simple geometry, wideband, high gain, and offers circular polarization. Afterward, two-port MIMO antenna are designed to get Left Hand Circular Polarization (LHCP) and Right-Hand Circular Polarization (RHCP). Four different cases are adopted to construct two-port MIMO antenna of suggested antenna. In case 1, both of the elements are placed parallel to each other; in the second case, the element is parallel but the radiating patch of second antenna element are rotated by 180°. In the third case, the second antenna element is placed orthogonally to the first antenna element. In the final case, the antenna is parallel but placed in the opposite end of substrate material. The S-parameters, axial ratio bandwidth (ARBW) gain, and radiation efficiency are studied and compared in all these cases. The two MIMO systems of all cases are designed by using Roger RT/Duroid 6002 with thickness of 0.79 mm. The overall size of two-port MIMO antennas is 20.5 mm × 12 mm × 0.79 mm. The MIMO configuration of the suggested CP antenna offers wideband, low mutual coupling, wide ARBW, high gain, and high radiation efficiency. The hardware prototype of all cases is fabricated to verify the predicated results. Moreover, the comparison of suggested two-port MIMO antenna is also performed with already published work, which show the quality of suggested work in terms of various performance parameters over them.

2.
Sensors (Basel) ; 22(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36236584

RESUMEN

Kidney cancer is a very dangerous and lethal cancerous disease caused by kidney tumors or by genetic renal disease, and very few patients survive because there is no method for early prediction of kidney cancer. Early prediction of kidney cancer helps doctors start proper therapy and treatment for the patients, preventing kidney tumors and renal transplantation. With the adaptation of artificial intelligence, automated tools empowered with different deep learning and machine learning algorithms can predict cancers. In this study, the proposed model used the Internet of Medical Things (IoMT)-based transfer learning technique with different deep learning algorithms to predict kidney cancer in its early stages, and for the patient's data security, the proposed model incorporates blockchain technology-based private clouds and transfer-learning trained models. To predict kidney cancer, the proposed model used biopsies of cancerous kidneys consisting of three classes. The proposed model achieved the highest training accuracy and prediction accuracy of 99.8% and 99.20%, respectively, empowered with data augmentation and without augmentation, and the proposed model achieved 93.75% prediction accuracy during validation. Transfer learning provides a promising framework with the combination of IoMT technologies and blockchain technology layers to enhance the diagnosing capabilities of kidney cancer.


Asunto(s)
Cadena de Bloques , Neoplasias Renales , Inteligencia Artificial , Seguridad Computacional , Humanos , Neoplasias Renales/diagnóstico , Aprendizaje Automático
3.
Comput Intell Neurosci ; 2022: 5918686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720929

RESUMEN

In the world, in the past recent five years, breast cancer is diagnosed about 7.8 million women's and making it the most widespread cancer, and it is the second major reason for women's death. So, early prevention and diagnosis systems of breast cancer could be more helpful and significant. Neural networks can extract multiple features automatically and perform predictions on breast cancer. There is a need for several labeled images to train neural networks which is a nonconventional method for some types of data images such as breast magnetic resonance imaging (MRI) images. So, there is only one significant solution for this query is to apply fine-tuning in the neural network. In this paper, we proposed a fine-tuning model using AlexNet in the neural network to extract features from breast cancer images for training purposes. So, in the proposed model, we updated the first and last three layers of AlexNet to detect the normal and abnormal regions of breast cancer. The proposed model is more efficient and significant because, during the training and testing process, the proposed model achieves higher accuracy 98.44% and 98.1% of training and testing, respectively. So, this study shows that the use of fine-tuning in the neural network can detect breast cancer using MRI images and train a neural network classifier by feature extraction using the proposed model is faster and more efficient.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...