Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
2.
Arq Neuropsiquiatr ; 82(4): 1-9, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38653486

RESUMEN

The field of neuromodulation has evolved significantly over the past decade. Developments include novel indications and innovations of hardware, software, and stimulation techniques leading to an expansion in scope and role of these techniques as powerful therapeutic interventions. In this review, which is the second part of an effort to document and integrate the basic fundamentals and recent successful developments in the field, we will focus on classic paradigms for electrode placement as well as new exploratory targets, mechanisms of neuromodulation using this technique and new developments, including focused ultrasound driven ablative procedures.


O campo da neuromodulação evoluiu significativamente na última década. Esse progresso inclui novas indicações e inovações de hardware, software e técnicas de estimulação, levando a uma expansão das áreas clínicas cobertas e no papel dessas técnicas como intervenções terapêuticas eficazes. Nesta revisão, que é a segunda parte de um esforço para documentar e integrar os fundamentos básicos e os desenvolvimentos recentes e bem-sucedidos no campo, vamos nos concentrar em paradigmas clássicos para colocação de eletrodos, bem como em novos alvos exploratórios, mecanismos de neuromodulação usados por esta técnica e novos desenvolvimentos, incluindo procedimentos ablativos orientados por ultrassom focalizado.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Estimulación Encefálica Profunda/métodos , Humanos , Enfermedad de Parkinson/terapia , Electrodos Implantados
3.
Arq Neuropsiquiatr ; 82(4): 1-9, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38653485

RESUMEN

Deep brain stimulation (DBS) is recognized as an established therapy for Parkinson's disease (PD) and other movement disorders in the light of the developments seen over the past three decades. Long-term efficacy is established for PD with documented improvement in the cardinal motor symptoms of PD and levodopa-induced complications, such as motor fluctuations and dyskinesias. Timing of patient selection is crucial to obtain optimal benefits from DBS therapy, before PD complications become irreversible. The objective of this first part review is to examine the fundamental concepts of DBS for PD in clinical practice, discussing the historical aspects, patient selection, potential effects of DBS on motor and non-motor symptoms, and the practical management of patients after surgery.


Nas últimas três décadas, a estimulação cerebral profunda (ECP) se tornou um tratamento bem estabelecido para doença de Parkinson (DP) e outros transtornos do movimento. A eficácia a longo prazo na DP foi bem documentada para a melhora dos sintomas motores cardinais da DP e das complicações induzidas pelo uso do levodopa, como as flutuações motoras e as discinesias. O momento da seleção do paciente é crucial para se obter os benefícios ideais da ECP, antes que as complicações da DP se tornem irreversíveis. O objetivo desta primeira parte da revisão é examinar os conceitos fundamentais da ECP na prática clínica, discutindo os aspectos históricos, a seleção de pacientes, os potenciais efeitos da ECP nos sintomas motores e não motores da doença e o manejo prático dos pacientes após a cirurgia.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Selección de Paciente , Resultado del Tratamiento
4.
Neurosurgery ; 95(3): 509-516, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511957

RESUMEN

Deep brain stimulation (DBS) is an emerging therapy for treatment-resistant depression (TRD). Although adverse effects have been reported in early-phase and a few randomized clinical trials, little is known about its overall safety profile, which has been assumed to be similar to that of DBS for movement disorders. The objective of this study was to pool existing safety data on DBS for TRD. Following PRISMA guidelines, PubMed was searched for English articles describing adverse outcomes after DBS for TRD. Studies were included if they reported at least 5 patients with a minimal follow-up of 6 months. After abstract (n = 607) and full-article review (n = 127), 28 articles reporting on 353 patients met criteria for final inclusion. Follow-up of the studies retrieved ranged from 12 to 96 months. Hemorrhages occurred in 0.8% of patients and infections in 10.2%. The rate of completed suicide was 2.5%. Development or worsening of depressive symptoms, anxiety, and mania occurred in 18.4%, 9.1%, and 5.1%, respectively. There were some differences between targets, but between-study heterogeneity precluded statistical comparisons. In conclusion, DBS for TRD is associated with surgical and psychiatric adverse events. Hemorrhage and infection occur at rates within an accepted range for other DBS applications. The risk of suicide after DBS for TRD is 2.5% but may not represent a significant deviation from the natural history of TRD. Finally, risks of worsening depression, anxiety, and the incidence of mania should be acknowledged when considering DBS for TRD.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Depresivo Resistente al Tratamiento , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Humanos , Trastorno Depresivo Resistente al Tratamiento/terapia
5.
Arq. neuropsiquiatr ; Arq. neuropsiquiatr;82(4): s00441786026, 2024.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1557139

RESUMEN

Abstract Deep brain stimulation (DBS) is recognized as an established therapy for Parkinson's disease (PD) and other movement disorders in the light of the developments seen over the past three decades. Long-term efficacy is established for PD with documented improvement in the cardinal motor symptoms of PD and levodopa-induced complications, such as motor fluctuations and dyskinesias. Timing of patient selection is crucial to obtain optimal benefits from DBS therapy, before PD complications become irreversible. The objective of this first part review is to examine the fundamental concepts of DBS for PD in clinical practice, discussing the historical aspects, patient selection, potential effects of DBS on motor and non-motor symptoms, and the practical management of patients after surgery.


Resumo Nas últimas três décadas, a estimulação cerebral profunda (ECP) se tornou um tratamento bem estabelecido para doença de Parkinson (DP) e outros transtornos do movimento. A eficácia a longo prazo na DP foi bem documentada para a melhora dos sintomas motores cardinais da DP e das complicações induzidas pelo uso do levodopa, como as flutuações motoras e as discinesias. O momento da seleção do paciente é crucial para se obter os benefícios ideais da ECP, antes que as complicações da DP se tornem irreversíveis. O objetivo desta primeira parte da revisão é examinar os conceitos fundamentais da ECP na prática clínica, discutindo os aspectos históricos, a seleção de pacientes, os potenciais efeitos da ECP nos sintomas motores e não motores da doença e o manejo prático dos pacientes após a cirurgia.

6.
Exp Neurol ; 368: 114501, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37558154

RESUMEN

Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.


Asunto(s)
Estimulación Encefálica Profunda , Humanos , Astrocitos/fisiología , Enfermedades Neuroinflamatorias , Encéfalo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
7.
Stereotact Funct Neurosurg ; 100(5-6): 275-281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36446334

RESUMEN

Posterior hypothalamic-deep brain stimulation (pHyp-DBS) has been reported as a successful treatment for reducing refractory aggressive behaviors in patients with distinct primary diagnoses. Here, we report on a patient with cri du chat syndrome presenting severe self-injury and aggressive behaviors toward others, who was treated with pHyp-DBS. Positive results were observed at long-term follow-up in aggressive behavior and quality of life. Intraoperative microdialysis and imaging connectomics analysis were performed to investigate possible mechanisms of action. Our results suggest the involvement of limbic and motor areas and alterations in main neurotransmitter levels in the targeted area that are associated with positive results following treatment.


Asunto(s)
Conectoma , Síndrome del Maullido del Gato , Estimulación Encefálica Profunda , Humanos , Síndrome del Maullido del Gato/complicaciones , Estudios de Seguimiento , Estimulación Encefálica Profunda/métodos , Calidad de Vida , Microdiálisis
8.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292973

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered the gold-standard treatment for PD; however, underlying therapeutic mechanisms need to be comprehensively elucidated, especially in relation to glial cells. We aimed to understand the effects of STN-microlesions and STN-DBS on striatal glial cells, inflammation, and extracellular glutamate/GABAergic concentration in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Rats with unilateral striatal 6-OHDA and electrodes implanted in the STN were divided into two groups: DBS OFF and DBS ON (5 days/2 h/day). Saline and 6-OHDA animals were used as control. Akinesia, striatal reactivity for astrocytes, microglia, and inflammasome, and expression of cytokines, cell signaling, and excitatory amino acid transporter (EAAT)-2 were examined. Moreover, striatal microdialysis was performed to evaluate glutamate and GABA concentrations. The PD rat model exhibited akinesia, increased inflammation, glutamate release, and decreased glutamatergic clearance in the striatum. STN-DBS (DBS ON) completely abolished akinesia. Both STN-microlesion and STN-DBS decreased striatal cytokine expression and the relative concentration of extracellular glutamate. However, STN-DBS inhibited morphological changes in astrocytes, decreased inflammasome reactivity, and increased EAAT2 expression in the striatum. Collectively, these findings suggest that the beneficial effects of DBS are mediated by a combination of stimulation and local microlesions, both involving the inhibition of glial cell activation, neuroinflammation, and glutamate excitotoxicity.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Animales , Ratas , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Oxidopamina , Inflamasomas/metabolismo , Electrodos , Glutamatos , Inflamación/terapia , Citocinas/metabolismo , Sistemas de Transporte de Aminoácidos , Ácido gamma-Aminobutírico
9.
BrJP ; 5(3): 239-247, July-Sept. 2022. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1403662

RESUMEN

ABSTRACT BACKGROUND AND OBJECTIVES: Half of neuropathic pain patients still end up failing clinical treatments. Electrical stimulation of the posterior insular cortex (ESI) modulates sensory and nociceptive circuits. This study evaluated the effects of a range of frequencies of ESI proposed to improve neuropathic pain. METHODS: Male Sprague Dawley rats, 280-340 g, submitted to the chronic constriction of the right sciatic nerve were tested for mechanical sensitivity using the paw pressure and von Frey flaments tests, and for thermal sensitivity using the hot plate test. The rats were submitted to ESI 10, 60 or 100 Hz (one, five or seven ESI, 15 min, 210 µs, 1V), applied to the posterior insular cortex, and were evaluated in the tests before and after ESI, or in follow-up of 48, 72 and 168h. The open field evaluated general activity after ESI 5. The involvment of opioid and cannabinoid testes were evaluated through treatment with naloxone and SR1416A - antagonist and inverse agonist/antagonist of the receptors, respectively, after ESI 5, while activation of astrocytes, marked by glial fibrillary acid protein (GFAP), and of microglia, marked by IBA-1 (glial marker), in the spinal cord evaluated by immunohistochemistry. RESULTS: Data demonstrate that 10, 60, and 100 Hz ESIs modulate mechanical and thermal sensitivity. ESI 5 increased immunoreactivity of GFAP in the spinal cord, without altering IBA-1 (glial marker). Naloxone and SR141716A reversed the antinociception of 60 Hz ESI 5. 60 Hz ESI 7 induced antinociception up to 72h. CONCLUSION: 60 Hz ESI induces opioid and cannabinoid-dependent antinociception and regulates glia. HIGHLIGHTS 60 Hz-delivered ESI was the best analgesic protocol for the insular stimulation. Data showed a prolonged analgesic effect up to 72h after repetitive ESI. ESI regulates glia activation in pain modulatory system.


RESUMO JUSTIFICATIVA E OBJETIVOS: Metade dos pacientes com dor neuropática são refratários aos tratamentos. A estimulação elétrica do córtex insular (EECI) posterior modula circuitos sensoriais e nociceptivos. Assim, este estudo avaliou os efeitos de uma faixa de frequências de EECI como tratamento em modelo animal de dor neuropática. MÉTODOS: Ratos machos, Sprague Dawley, 280-340 g, submetidos a cirurgia para indução de constrição crônica (ICC) do nervo isquiático direito, foram avaliados em relação à sensibilidade mecânica com a utilização do teste de pressão de pata e de flamentos de von Frey, e sensibilidade térmica usando o teste de placa quente. Os ratos foram submetidos a EECI de 10, 60 ou 100 Hz (uma, cinco ou sete EECI, 15 min, 210 µs, 1V), aplicada ao córtex insular posterior esquerdo, e avaliados nos testes antes e após EECI, ou em follow up de 48, 72 e 168 horas. Por meio do teste de campo aberto, avaliou-se a atividade geral após a EECI5. O envolvimento de receptores opioides e canabinoides foi avaliado por meio da administração de naloxona e SR141716A - antagonista e agonista/antagonista inverso dos receptores, respectivamente - após a EECI 5, enquanto a ativação de astrócitos - marcada por proteína ácida fibrilar glial (GFAP), e de micróglia - marcada por IBA-1 - na medula espinal foi avaliada por imuno-histoquímica. RESULTADOS: Os dados mostraram que EECI em 10, 60 e 100 Hz modulam a sensibilidade mecânica e térmica dos animais. A EECI 5 aumentou a imunorreatividade de GFAP na medula espinhal, sem alterar IBA-1 (marcador glial). Naloxona e SR141716A reverteram a antinocicepção produzida por EECI 5 de 60 Hz. EECI 7 de 60 Hz induziu antinocicepção por até 72 horas. CONCLUSÃO: A EECI 60 Hz produz antinocicepção dependente de opioides e canabinoides e regula a glia. DESTAQUES A EECI de 60 Hz foi o melhor protocolo analgésico para nossa estimulação insular. Os dados mostram um efeito analgésico prolongado de até 72h após repetidas EECI. A EECI regula a ativação da glia no sistema modulatório da dor.

10.
Front Pain Res (Lausanne) ; 3: 1084701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713643

RESUMEN

The use of deep brain stimulation (DBS) for the treatment of chronic pain was one of the first applications of this technique in functional neurosurgery. Established brain targets in the clinic include the periaqueductal (PAG)/periventricular gray matter (PVG) and sensory thalamic nuclei. More recently, the anterior cingulum (ACC) and the ventral striatum/anterior limb of the internal capsule (VS/ALIC) have been investigated for the treatment of emotional components of pain. In the clinic, most studies showed a response in 20%-70% of patients. In various applications of DBS, animal models either provided the rationale for the development of clinical trials or were utilized as a tool to study potential mechanisms of stimulation responses. Despite the complex nature of pain and the fact that animal models cannot reliably reflect the subjective nature of this condition, multiple preparations have emerged over the years. Overall, DBS was shown to produce an antinociceptive effect in rodents when delivered to targets known to induce analgesic effects in humans, suggesting a good predictive validity. Compared to the relatively high number of clinical trials in the field, however, the number of animal studies has been somewhat limited. Additional investigation using modern neuroscience techniques could unravel the mechanisms and neurocircuitry involved in the analgesic effects of DBS and help to optimize this therapy.

11.
Int J Mol Sci, v. 23, 20, 12116, out. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4669

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered the goldstandard treatment for PD; however, underlying therapeutic mechanisms need to be comprehensively elucidated, especially in relation to glial cells. We aimed to understand the effects of STN-microlesions and STN-DBS on striatal glial cells, inflammation, and extracellular glutamate/GABAergic concentration in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Rats with unilateral striatal 6-OHDA and electrodes implanted in the STN were divided into two groups: DBS OFF and DBS ON (5 days/2 h/day). Saline and 6-OHDA animals were used as control. Akinesia, striatal reactivity for astrocytes, microglia, and inflammasome, and expression of cytokines, cell signaling, and excitatory amino acid transporter (EAAT)-2 were examined. Moreover, striatal microdialysis was performed to evaluate glutamate and GABA concentrations. The PD rat model exhibited akinesia, increased inflammation, glutamate release, and decreased glutamatergic clearance in the striatum. STN-DBS (DBS ON) completely abolished akinesia. Both STN-microlesion and STN-DBS decreased striatal cytokine expression and the relative concentration of extracellular glutamate. However, STN-DBS inhibited morphological changes in astrocytes, decreased inflammasome reactivity, and increased EAAT2 expression in the striatum. Collectively, these findings suggest that the beneficial effects of DBS are mediated by a combination of stimulation and local microlesions, both involving the inhibition of glial cell activation, neuroinflammation, and glutamate excitotoxicity.

13.
Brain ; 144(10): 2994-3004, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34373901

RESUMEN

Motor cortex stimulation via surgically implanted electrodes has been used as an off-label treatment for chronic neuropathic pain, but its efficacy has not been fully established. We aimed to objectively study the efficacy of motor cortex stimulation and characterize potential predictors of response. In this randomized, double-blind, sham-controlled, single centre trial, we recruited 18 patients with chronic neuropathic pain who did not adequately respond to conventional treatment and had a numerical pain rating scale (NRS) score ≥6. Patients were initially assigned to receive 3 months of active ('on') or sham ('off') stimulation in a double-blind cross-over phase. This was followed by a 3-month single-blind phase, and 6 months of open-label follow-up. A meaningful response in our trial was defined as a ≥30% or 2-point reduction in NRS scores during active stimulation. Using Bayesian statistics, we found a 41.4% probability of response towards on versus off motor cortex stimulation. The probability of improvement during active stimulation (double-blind, single-blind and open-label phases) compared to baseline was 47.2-68.5%. Thirty nine per cent of the patients were considered long-term responders, 71.4% of whom had facial pain, phantom limb pain or complex regional pain syndrome. In contrast, 72.7% of non-responders had either post-stroke pain or pain associated with brachial plexus avulsion. Thirty-nine per cent of patients had a substantial postoperative analgesic effect after electrode insertion in the absence of stimulation. Individuals with diagnoses associated with a good postoperative outcome or those who developed an insertional effect had a near 100% probability of response to motor cortex stimulation. In summary, we found that ∼40% of patients responded to motor cortex stimulation, particularly those who developed an insertional effect or had specific clinical conditions that seemed to predict an appropriate postoperative response.


Asunto(s)
Dolor Crónico/terapia , Terapia por Estimulación Eléctrica/métodos , Corteza Motora/fisiología , Neuralgia/terapia , Dimensión del Dolor/métodos , Adulto , Anciano , Dolor Crónico/diagnóstico , Dolor Crónico/fisiopatología , Estudios Cruzados , Método Doble Ciego , Electrodos Implantados , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Neuralgia/diagnóstico , Neuralgia/fisiopatología , Método Simple Ciego
14.
Front Psychiatry ; 12: 680484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276448

RESUMEN

Objective: Deep brain stimulation (DBS) was proposed in 1999 to treat refractory obsessive-compulsive disorder (OCD). Despite the accumulated experience over more than two decades, 30-40% of patients fail to respond to this procedure. One potential reason to explain why some patients do not improve in the postoperative period is that DBS might not have engaged structural therapeutic networks that are crucial to a favorable outcome in non-responders. This article reviews magnetic resonance imaging diffusion studies (DTI-MRI), analyzing neural networks likely modulated by DBS in OCD patients and their corresponding clinical outcome. Methods: We used a systematic review process to search for studies published from 2005 to 2020 in six electronic databases. Search terms included obsessive-compulsive disorder, deep brain stimulation, diffusion-weighted imaging, diffusion tensor imaging, diffusion tractography, tractography, connectome, diffusion analyses, and white matter. No restriction was made concerning the surgical target, DTI-MRI technique and the method of data processing. Results: Eight studies published in the last 15 years were fully assessed. Most of them used 3 Tesla DTI-MRI, and different methods of data acquisition and processing. There was no consensus on potential structures and networks underlying DBS effects. Most studies stimulated the ventral anterior limb of the internal capsule (ALIC)/nucleus accumbens. However, the contribution of different white matter pathways that run through the ALIC for the effects of DBS remains elusive. Moreover, the improvement of cognitive and affective symptoms in OCD patients probably relies on electric modulation of distinct networks. Conclusion: Though, tractography is a valuable tool to understand neural circuits, the effects of modulating different fiber tracts in OCD are still unclear. Future advances on image acquisition and data processing and a larger number of studies are still required for the understanding of the role of tractography-based targeting and to clarify the importance of different tracts for the mechanisms of DBS.

15.
Neurosurgery ; 89(3): 450-459, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34161592

RESUMEN

BACKGROUND: Gait and balance disturbance are challenging symptoms in advanced Parkinson's disease (PD). Anatomic and clinical data suggest that the fields of Forel may be a potential surgical target to treat these symptoms. OBJECTIVE: To test whether bilateral stimulation centered at the fields of Forel improves levodopa unresponsive freezing of gait (FOG), balance problems, postural instability, and falls in PD. METHODS: A total of 13 patients with levodopa-unresponsive gait disturbance (Hoehn and Yahr stage ≥3) were included. Patients were evaluated before (on-medication condition) and 1 yr after surgery (on-medication-on-stimulation condition). Motor symptoms and quality of life were assessed with the Unified Parkinson's Disease Rating scale (UPDRS III) and Quality of Life scale (PDQ-39). Clinical and instrumented analyses assessed gait, balance, postural instability, and falls. RESULTS: Surgery improved balance by 43% (95% confidence interval [CI]: 21.2-36.4 to 35.2-47.1; P = .0012), reduced FOG by 35% (95% CI: 15.1-20.3 to 8.1-15.3; P = .0021), and the monthly number of falls by 82.2% (95% CI: 2.2-6.9 to -0.2-1.7; P = .0039). Anticipatory postural adjustments, velocity to turn, and postural sway measurements also improved 1 yr after deep brain stimulation (DBS). UPDRS III motor scores were reduced by 27.2% postoperatively (95% CI: 42.6-54.3 to 30.2-40.5; P < .0001). Quality of life improved 27.5% (95% CI: 34.6-48.8 to 22.4-37.9; P = .0100). CONCLUSION: Our results suggest that DBS of the fields of Forel improved motor symptoms in PD, as well as the FOG, falls, balance, postural instability, and quality of life.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Encéfalo , Marcha , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/etiología , Humanos , Levodopa/uso terapéutico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Equilibrio Postural , Calidad de Vida
16.
Brain Res ; 1754: 147237, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33400930

RESUMEN

The insula has emerged as a critical target for electrical stimulation since it influences pathological pain states. We investigated the effects of repetitive electrical stimulation of the insular cortex (ESI) on mechanical nociception, and general locomotor activity in rats subjected to chronic constriction injury (CCI) of the sciatic nerve. We also studied neuroplastic changes in central pain areas and the involvement of GABAergic signaling on ESI effects. CCI rats had electrodes implanted in the left agranular posterior insular cortex (pIC), and mechanical sensitivity was evaluated before and after one or five daily consecutive ESIs (15 min each, 60 Hz, 210 µs, 1 V). Five ESIs (repetitive ESI) induced sustained mechanical antinociception from the first to the last behavioral assessment without interfering with locomotor activity. A marked increase in Fos immunoreactivity in pIC and a decrease in the anterior and mid-cingulate cortex, periaqueductal gray and hippocampus were noticed after five ESIs. The intrathecal administration of the GABAA receptor antagonist bicuculline methiodide reversed the stimulation-induced antinociception after five ESIs. ESI increased GAD65 levels in pIC but did not interfere with GABA, glutamate or glycine levels. No changes in GFAP immunoreactivity were found in this work. Altogether, the results indicate the efficacy of repetitive ESI for the treatment of experimental neuropathic pain and suggest a potential influence of pIC in regulating pain pathways partially through modulating GABAergic signaling.


Asunto(s)
Analgesia , Estimulación Eléctrica , Moduladores del GABA/farmacología , Neuralgia/terapia , Manejo del Dolor , Analgesia/métodos , Animales , Moduladores del GABA/metabolismo , Hiperalgesia/metabolismo , Masculino , Neuralgia/metabolismo , Umbral del Dolor/efectos de los fármacos , Sustancia Gris Periacueductal/efectos de los fármacos , Ratas Sprague-Dawley
17.
Neurosurgery ; 88(2): E158-E169, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33026432

RESUMEN

BACKGROUND: Intractable aggressive behavior (iAB) is a devastating behavioral disorder that may affect psychiatric patients. These patients have reduced quality of life, are more challenging to treat as they impose a high caregiver burden and require specialized care. Neuromodulatory interventions targeting the amygdala, a key hub in the circuitry of aggressive behavior (AB), may provide symptom alleviation. OBJECTIVE: To Report clinical and imaging findings from a case series of iAB patients treated with bilateral amygdala ablation. METHODS: This series included 4 cases (3 males, 19-32 years old) who underwent bilateral amygdala radiofrequency ablation for iAB hallmarked by life-threatening self-injury and social aggression. Pre- and postassessments involved full clinical, psychiatric, and neurosurgical evaluations, including scales quantifying AB, general agitation, quality of life, and magnetic resonance imaging (MRI). RESULTS: Postsurgery assessments revealed decreased aggression and agitation and improved quality of life. AB was correlated with testosterone levels and testosterone/cortisol ratio in males. No clinically significant side effects were observed. Imaging analyses showed preoperative amygdala volumes within normal populational range and confirmed lesion locations. The reductions in aggressive symptoms were accompanied by significant postsurgical volumetric reductions in brain areas classically associated with AB and increases in regions related to somatosensation. The local volumetric reductions are found in areas that in a normal brain show high expression levels of genes related to AB (eg, aminergic transmission) using gene expression data provided by the Allen brain atlas. CONCLUSION: These findings provide new insight into the whole brain neurocircuitry of aggression and suggest a role of altered somatosensation and possible novel neuromodulation targets.


Asunto(s)
Agresión/fisiología , Amígdala del Cerebelo/cirugía , Trastornos Mentales/fisiopatología , Trastornos Mentales/cirugía , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Calidad de Vida , Ablación por Radiofrecuencia/métodos , Radiocirugia/métodos , Adulto Joven
18.
BJPsych Open ; 6(5): e85, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32762791

RESUMEN

Aggressive behaviour is a highly prevalent and devastating condition in autism spectrum disorder resulting in impoverished quality of life. Gold-standard therapies are ineffective in about 30% of patients leading to greater suffering. We investigated cortical thickness in individuals with autism spectrum disorder with pharmacological-treatment-refractory aggressive behaviour compared with those with non-refractory aggressive behaviour and observed a brain-wide pattern of local increased thickness in key areas related to emotional control and overall decreased cortical thickness in those with refractory aggressive behaviour, suggesting refractoriness could be related to specific morphological patterns. Elucidating the neurobiology of refractory aggressive behaviour is crucial to provide insights and potential avenues for new interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA