Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 9(6)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37367170

RESUMEN

Magnetic hybrid hydrogels have exhibited remarkable efficacy in various areas, particularly in the biomedical sciences, where these inventive substances exhibit intriguing prospects for controlled drug delivery, tissue engineering, magnetic separation, MRI contrast agents, hyperthermia, and thermal ablation. Additionally, droplet-based microfluidic technology enables the fabrication of microgels possessing monodisperse characteristics and controlled morphological shapes. Here, alginate microgels containing citrated magnetic nanoparticles (MNPs) were produced by a microfluidic flow-focusing system. Superparamagnetic magnetite nanoparticles with an average size of 29.1 ± 2.5 nm and saturation magnetization of 66.92 emu/g were synthesized via the co-precipitation method. The hydrodynamic size of MNPs was changed from 142 nm to 826.7 nm after the citrate group's attachment led to an increase in dispersion and the stability of the aqueous phase. A microfluidic flow-focusing chip was designed, and the mold was 3D printed by stereo lithographic technology. Depending on inlet fluid rates, monodisperse and polydisperse microgels in the range of 20-120 µm were produced. Different conditions of droplet generation in the microfluidic device (break-up) were discussed considering the model of rate-of-flow-controlled-breakup (squeezing). Practically, this study indicates guidelines for generating droplets with a predetermined size and polydispersity from liquids with well-defined macroscopic properties, utilizing a microfluidic flow-focusing device (MFFD). Fourier transform infrared spectrometer (FT-IR) results indicated a chemical attachment of citrate groups on MNPs and the existence of MNPs in the hydrogels. Magnetic hydrogel proliferation assay after 72 h showed a better rate of cell growth in comparison to the control group (p = 0.042).

2.
Environ Sci Pollut Res Int ; 30(31): 76515-76527, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37233934

RESUMEN

One of the materials that has recently been used to remove environmental pollution from industrial effluents with photocatalytic technology is cobalt chromate (CoCr2O4) nanoparticles. An effective way to improve the photocatalytic properties of materials is to composite them with other photocatalysts to prevent recombination of electron-holes and accelerate the transfer of oxidation/reduction agents. Graphitic carbon nitride (g-C3N4) is an excellent choice due to its unique properties. In this research, CoCr2O4 and its composite with g-C3N4 (5, 10, and 15%) were synthesized by polyacrylamide gel method and characterized by X-ray diffraction, scanning electron microscopy, FTIR, UV-Vis spectroscopy techniques. The photocatalytic behavior of synthesized nanoparticles was investigated in the degradation process of methylene blue dye. The results showed that the composite samples have higher efficiency in photocatalytic activity than the pure CoCr2O4 sample. Using CoCr2O4-15 wt%g-C3N4 nanocomposite, after 80 min, methylene blue was completely degraded. The mechanism of degradation by CoCr2O4-g-C3N4 nanocomposite was the superoxide radical produced by the reaction of electrons with oxygen absorbed on the catalyst surface, as well as optically produced holes directly.


Asunto(s)
Nanocompuestos , Nanopartículas , Purificación del Agua , Azul de Metileno/química , Microscopía Electrónica de Rastreo , Nanocompuestos/química
3.
Materials (Basel) ; 16(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36903222

RESUMEN

This study aimed to fabricate a glass ionomer cement/diopside (GIC/DIO) nanocomposite to improve its mechanical properties for biomaterials applications. For this purpose, diopside was synthesized using a sol-gel method. Then, for preparing the nanocomposite, 2, 4, and 6 wt% diopside were added to a glass ionomer cement (GIC). Subsequently, X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and Fourier transform infrared spectrophotometry (FTIR) analyses were used to characterize the synthesized diopside. Furthermore, the compressive strength, microhardness, and fracture toughness of the fabricated nanocomposite were evaluated, and a fluoride-releasing test in artificial saliva was also applied. The highest concurrent enhancements of compressive strength (1155.7 MPa), microhardness (148 HV), and fracture toughness (5.189 MPa·m1/2) were observed for the glass ionomer cement (GIC) with 4 wt% diopside nanocomposite. In addition, the results of the fluoride-releasing test showed that the amount of released fluoride from the prepared nanocomposite was slightly lower than the glass ionomer cement (GIC). Overall, the improvement in mechanical properties and optimal fluoride release of prepared nanocomposites can introduce suitable options for dental restorations under load and orthopedic implants.

4.
Materials (Basel) ; 16(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36837346

RESUMEN

Bake hardening (BH) is a vital part of special steel production. Studies in this field have focused on steels under homogeneous yielding, but until now, none have been conducted on the phenomena that occur for steels under heterogeneous yielding. In the current study, the effect of adding Nb and V alloying elements on the strength of ultra-low carbon (ULC) steel after bake hardening was investigated. The effects of pre-strain, grain size, and recrystallization annealing temperature were analyzed, as well as the effect of Nb and V on the yield stress caused by the bake hardening process. For this purpose, five types of alloys with different V and Nb contents were melted, cast in an induction furnace, and subjected to hot hammering and hot rolling. Then, cold rolling was applied to the samples by ~80%. To eliminate the effects of cold working, tensile samples were subjected to recrystallization annealing at 750 and 800 °C for 30 min, and the samples were quickly quenched in a mixture of a NaCl solution and ice. The annealed samples were subjected to a pre-tensile strain in the range of 2-12% and then aged in a silicone oil bath at 180 °C for 30 min. Then they were subjected to a tensile test. The obtained results showed that with the increase of the pre-strain and the annealing temperature, the values of baking hardness increased. The presence of V in the composition of steel reduced the annealing temperature.

5.
Front Bioeng Biotechnol ; 10: 1083232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578508

RESUMEN

Silver (Ag) is known to possess antimicrobial properties which is commonly attributed to soluble Ag ions. Here, we showed that Ag nanoparticles (NPs) potently inhibited SARS-CoV-2 infection using two different pseudovirus neutralization assays. We also evaluated a set of Ag nanoparticles of different sizes with varying surface properties, including polyvinylpyrrolidone (PVP)-coated and poly (ethylene glycol) (PEG)-modified Ag nanoparticles, and found that only the bare (unmodified) nanoparticles were able to prevent virus infection. For comparison, TiO2 nanoparticles failed to intercept the virus. Proteins and lipids may adsorb to nanoparticles forming a so-called bio-corona; however, Ag nanoparticles pre-incubated with pulmonary surfactant retained their ability to block virus infection in the present model. Furthermore, the secondary structure of the spike protein of SARS-CoV-2 was perturbed by the Ag nanoparticles, but not by the ionic control (AgNO3) nor by the TiO2 nanoparticles. Finally, Ag nanoparticles were shown to be non-cytotoxic towards the human lung epithelial cell line BEAS-2B and this was confirmed by using primary human nasal epithelial cells. These results further support that Ag nanoparticles may find use as anti-viral agents.

6.
Materials (Basel) ; 15(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36556567

RESUMEN

In this study, L-arginine (Arg) modified magnetite (Fe3O4) nanoparticles (RMNPs) were firstly synthesized through a one-step co-precipitation method, and then these aminated nanoparticles (NPs) were, again, coated by pre-oxidized dextran (Dext), in which aldehyde groups (DextCHO) have been introduced on the polymer chain successfully via a strong chemical linkage. Arg, an amino acid, acts as a mediator to link the Dext to a magnetic core. The as-synthesized Arg-modified and Dext-coated arginine modified Fe3O4 NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Both synthesized samples, XRD pattern and FT-IR spectra proved that the core is magnetite. FT-IR confirmed that the chemical bonds of Arg and Dext both exist in the samples. SEM images showed that the NPs are spherical and have an acceptable distribution size, and the VSM analysis indicated the superparamagnetic behavior of samples. The saturation magnetization was decreased after Dext coating, which confirms successive coating RMNPs with Text. In addition, the TGA analysis demonstrated that the prepared magnetic nanocomposites underwent various weight loss levels, which admitted the modification of magnetic cores with Arg and further coating with Dext.

7.
Materials (Basel) ; 15(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36431405

RESUMEN

Mn52Al45.7C2.3 flakes with different sizes were prepared with two distinct surfactant-assisted ball-milling methods using cylindrical and barrel containers. Different microstructure and magnetic properties were measured based on the sequence of the container shape and different ball-milling times (2, 5, and 10 h). Morphology investigations showed that for powders milled in a barrel container, the amount of τ-phase was more compared to the samples milled in a cylindrical container. Moreover, in the powders milled with barrel containers, considerably higher magnetic properties were obtained in terms of saturation magnetization (Ms) and remanent magnetization (Mr) compared to those powders milled with cylindrical containers. Magnetic properties were found to be a function of the ball-milling time. High remanent magnetization and saturation magnetization have been found for powders milled in barrel containers, whereas only mediocre remanent magnetization and saturation magnetization have been measured in the case of milling in cylindrical containers. The highest Ms = 52.49 emu g-1 and Mr = 24.10 emu g-1 were obtained for the powders milled in barrel containers for 2 h. The higher magnetic properties taken from the milling in barrel containers is due to the higher shear stress and more uniform strain distribution induced by the barrel configuration, resulting in the stable τ-phase at a reasonably low-strain microstructure.

8.
Materials (Basel) ; 15(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36431683

RESUMEN

This paper deals with the effects of three low-carbon steel filler metals consisting of ferritic and austenitic phases on the weld joints of the tungsten inert gas (TIG) welding of Hardox 500 steel. The correlation between the microstructure and mechanical properties of the weld joints was investigated. For this purpose, macro and microstructure were examined, and then microhardness, tensile, impact, and fracture toughness tests were carried out to analyze the mechanical properties of joints. The results of optical microscopy (OM) images showed that the weld zones (WZ) of all three welds were composed of different ferritic morphologies, including allotriomorphic ferrite, Widmanstätten ferrite, and acicular ferrite, whereas the morphology of the heat-affected zone (HAZ) showed the various microstructures containing mostly ferrite and pearlite phases. Further, based on mechanical tests, the second filler with ferritic microstructure represented better elongation, yield strength, ultimate tensile strength, impact toughness, and fracture toughness due to having a higher amount of acicular ferrite phase compared to the weld joints concerning the other fillers consisting of austenitic and ferritic-austenitic. However, scanning electron microscopy (SEM) images on the fracture surfaces of the tensile test showed a ductile-type fracture with a large number of deep and shallow voids while on the fracture surfaces resulting from the Charpy impact tests and both ductile and cleavage modes of fracture took place, indicating the initiation and propagation of cracks, respectively. The presence of acicular ferrite as a soft phase that impedes the dislocation pile-up brings about the ductile mode of fracture while inclusions may cause stress concentration, thus producing cleavage surfaces.

9.
Nanomaterials (Basel) ; 12(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36432264

RESUMEN

One of the most important methods of controlling the properties of concrete and cement-based materials is to control the rate and kinetics of cement hydration. In the present study, novel flexible polyurethane-decorated MgO nanohybrids were synthesized using a simple chemical method, added to cement paste in different amounts, and utilized as an effective mechanical performance-enhancing factor for cement paste. It was observed that by adding 3 wt% synthesized PU-MgO nanohybrids to cement paste, its mechanical properties were improved and its compressive strength and flexural strength were increased by up to 13% and 15%, respectively, compared to the plain cement, after 45 days. The effect mechanism of adding PU-MgO nanoparticles on the properties of the cement paste was investigated. The addition of PU-MgO nanohybrids increased the pozzolanic reactions and formed more C-S-H phases.

10.
Materials (Basel) ; 15(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36363352

RESUMEN

Prior to the long-term utilization of solid oxide fuel cell (SOFC), one of the most remarkable electrochemical energy conversion devices, a variety of difficult experimental validation procedures is required, so it would be time-consuming and steep to predict the applicability of these devices in the future. For numerous years, extensive efforts have been made to develop mathematical models to predict the effects of various characteristics of solid oxide fuel cells (SOFCs) components on their performance (e.g., voltage). Taking advantage of the machine learning (ML) method, however, some issues caused by assumptions and calculation costs in mathematical modeling could be alleviated. This paper presents a machine learning approach to predict the anode-supported SOFCs performance as one of the most promising types of SOFCs based on architectural and operational variables. Accordingly, a dataset was collected from a study about the effects of cell parameters on the output voltage of a Ni-YSZ anode-supported cell. Convolutional machine learning models and multilayer perceptron neural networks were implemented to predict the current-voltage dependency. The resulting neural network model could properly predict, with more than 0.998 R2 score, a mean squared error of 9.6 × 10-5, and mean absolute error of 6 × 10-3 (V). Conventional models such as the Gaussian process as one of the most powerful models exhibits a prediction accuracy of 0.996 R2 score, 10-4 mean squared, and 6 × 10-3 (V) absolute error. The results showed that the built neural network could predict the effect of cell parameters on current-voltage dependency more accurately than previous mathematical and artificial neural network models. It is noteworthy that this procedure used in this study is general and can be easily applied to other materials datasets.

11.
Micromachines (Basel) ; 13(11)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36363825

RESUMEN

In this study, a simple growth of permalloy NiFe (Py) thin films on a semiconductive Si substrate using the electrochemical deposition method is presented. The electrodeposition was performed by applying a direct current of 2 mA/cm2 during different times of 120 and 150 s and thin films with different thicknesses of 56 and 70 nm were obtained, respectively. The effect of Py thickness on the magnetic properties of thin films was investigated. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), ferromagnetic resonance (FMR), anisotropic magnetoresistance (AMR), and magneto-optic Kerr effect (MOKE) analyses were performed to characterize the Py thin films. It was observed that the coercivity of the Py thin film increases by increasing the thickness of the layer. Microscopic images of the layers indicated granular growth of the Py thin films with different roughness values leading to different magnetic properties. The magnetic resonance of the Py thin films was measured to fully describe the magnetic properties of the layers. The magnetoresistance ratios of deposited Py thin films at times of 120 and 150 s were obtained as 0.226% and 0.235%, respectively. Additionally, the damping constant for the deposited sample for 120 s was estimated as 1.36 × 10-2, which is comparable to expensive sputtered layers' characteristics.

12.
Nanomaterials (Basel) ; 12(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36364490

RESUMEN

In this paper, the phase transformation in a gaseous heat treatment and re-calcination (GTR) process for preparing nanocrystalline Sr-hexaferrite powder using methane (CH4) was studied. The process included gaseous heat treatment and subsequent re-calcination. Phase composition of the powder and its physical properties were changed significantly owing to formation of different intermediate phases. Sr-hexaferrite powder was prepared by the conventional route as the precursor. The results were represented in a phase transformation map that showed the intermediate phases and clarified the transformation path during the process. As evidenced by the map, the process had four general stages: decomposition of hexaferrite, reduction of iron oxides to pure iron, re-oxidation of iron, and re-formation of hexaferrite with different properties and structure.

13.
Materials (Basel) ; 15(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36234287

RESUMEN

Pyrite is an earth-abundant and low-cost material with a specific collection of properties including a low band gap and high absorption coefficient of solar light. These properties make pyrite a good choice in a wide variety of applications such as catalysts, batteries, and photovoltaic devices. A thin film composed of vertically aligned pyrite nano-rods was processed via a hydration-condensation method followed by subsequent aging and sulfurization. In this process, no ionic salt was used which resulted in a lower cost process with a lower level of impurities. Field emission scanning electron microscopy, X-ray diffraction, and Raman spectroscopy analyses were used to characterize the thin films in different steps of the process. The major impurity of the final thin films was the marcasite phase according to the Raman analysis which could be minimized by lowering sulfurizing time to about 60 min. In addition, after structural, electrical, and optical characterization of thin films, these layers' performances in a photovoltaic device were also examined. After deposition of a thin aluminum layer, Schottky-type solar cells of pyrite formed which were then illuminated to measure their current-voltage characteristics. The results show that a combination of low-cost materials and a low-cost preparation method is applicable for building future solar cells.

14.
Nanomaterials (Basel) ; 12(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36234431

RESUMEN

The reverse magnetization behavior for bulk composite alloys containing Mn-Al-C and α-Fe nanoparticles (NPs) has been investigated by hysteresis loops, recoil, and first-order reversal curves (FORC) analysis. The effect of adding different percentages of α-Fe (5, 10, 15, and 20 wt. %) on the magnetic properties and demagnetization behavior of Mn-Al-C nanostructured bulk magnets was investigated. The fabricated nanocomposites were characterized by XRD and VSM for structural analysis and magnetic behavior investigations, respectively. The demagnetization curve of the sample Mn-Al-C-5wt. % α-Fe showed a single hard magnetic behavior and showed the highest increase in remanence magnetization compared to the sample without α-Fe, and therefore this combination was selected as the optimal composition for FORC analysis. Magnetic properties for Mn-Al-C-5 wt. % α-Fe nanocomposite were obtained as Ms = 75 emu/g, Mr = 46 emu/g, Hc = 3.3 kOe, and (BH)max = 1.6 MGOe, indicating a much higher (BH)max than the sample with no α-Fe. FORC analysis was performed to identify exchange coupling for the Mn-Al-C-0.05α-Fe nanocomposite sample. The results of this analysis showed the presence of two soft and hard ferromagnetic components. Further, it showed that the reverse magnetization process in the composite sample containing 5 wt. % α-Fe is the domain rotation model.

15.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077055

RESUMEN

In this study, the protein stability of hen egg-white lysozymes (HEWL) by Fe3O4 and Fe3O4-coated trehalose (Fe3O4@Tre) magnetic nanoparticles (NPs) is investigated. For this purpose, the co-precipitation method was used to synthesize magnetic NPs. The synthesized NPs were characterized by XRD, FT-IR spectroscopy, FE-SEM, and VSM analysis. In addition, the stability of HEWLs exposed to different NP concentrations in the range of 0.001-0.1 mg mL-1 was investigated by circular dichroism (CD) spectroscopy, fluorescence, and UV-Vis analysis. Based on the results, in the NP concentration range of 0.001-0.04 mg mL-1 the protein structure is more stable, and this range was identified as the range of kosmotropic concentration. The helicity was measured at two concentration points of 0.02 and 0.1 mg mL-1. According to the results, the α-helix at 0.02 mg mL-1 of Fe3O4 and Fe3O4@Tre was increased from 35.5% for native protein to 37.7% and 38.7%, respectively. The helicity decreased to 36.1% and 37.4%, respectively, with increasing the concentration of Fe3O4 and Fe3O4@Tre to 0.1 mg mL-1. The formation of hydrated water shells around protein molecules occurred by using Fe3O4@Tre NPs. Hence, it can be concluded that the trehalose as a functional group along with magnetic NPs can improve the stability of proteins in biological environments.


Asunto(s)
Nanopartículas de Magnetita , Clara de Huevo , Nanopartículas de Magnetita/química , Muramidasa/química , Espectroscopía Infrarroja por Transformada de Fourier , Trehalosa
16.
Sci Rep ; 12(1): 15191, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071123

RESUMEN

In the present work, the effect of thermal cycles on the physical and thermal properties of AZ31 alloy and AZ31/5wt%SiC and AZ31/10wt%SiC composites was investigated. Samples were prepared using the stir casting method and then subjected to precipitation hardening. Thermal cycles were done for as-cast and aged samples with V-shaped notch under 300, 600, and 900 heating and cooling cycles at 150 and 350 °C. The crack length (CL) was evaluated using optical microscope (OM), scanning electron microscope (SEM), and energy-dispersive scanning electron (EDS) analysis. Also, density, porosity, thermal expansion coefficient of the samples were evaluated. X-ray diffraction (XRD) analysis was employed to assess the phases present in the material. The results demonstrated that by increasing the number of thermal cycles up to 600 at 150 °C and 350 °C, the porosity and density of the as-cast and aged AZ31 alloy decreased and increased, respectively; however, the density and open porosity were remained constant for the composite samples. The crack's length enlarged with increasing the thermal cycles from 300 to 600 µm at 150 °C and 300 to 900 µm at 350 °C. It was found that the reinforcement and precipitates prevented the rapid growth of the crack in the magnesium matrix. All in All, composite and the aged samples demonstrated better thermal fatigue resistance compared with that of the unreinforced alloy and as-cast samples, respectively.

17.
Materials (Basel) ; 15(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36143739

RESUMEN

In the current study, the creep properties of magnesium alloy reinforced with SiC particles were investigated. For this purpose, ZK60/SiCp composite was produced by the stir casting method following the KoBo extrusion and precipitation hardening processes. The creep tests were performed at 150 °C under 10-110 MPa. The results showed that the stress exponent (n) and the average true activation energy (Q) was changed at high stresses, was found with increasing stress, the creep mechanism changing from grain boundary sliding to dislocation climb. The results of microstructure characterization after the creep test showed that at low stresses, the dynamic recrystallization resulting from twinning induced the GBS mechanism. However, at high stresses, with increasing diffusion rates, conditions are provided for dynamic precipitation and the dislocation climb of the dominant creep mechanism. Examination of the fracture surfaces and the surrounding areas showed that the cavity nucleation in the ternary boundary and surrounding precipitation was the main cause of damage. The evaluation of the samples texture after creep showed that the unreinforced alloy showed a moderately strong fiber texture along the angle of ϕ1 = 0-90°, which was tilted about Φ = 10°. A new strong texture component was observed at (90°, 5°, 0°) for the composite sample, which crept due to minor splitting of the basal pole by ~5° toward RD.

18.
Materials (Basel) ; 15(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35888210

RESUMEN

In the present research, the synergistic effect of Arabic and guar gum inhibitors on the corrosion efficiency of concrete reinforcement was investigated. Thus, eight types of Arabic and guar gum combinations with 100, 250, 500, 750, and 1000 ppm were added to the steel reinforcement for 1, 7, 28, 48, and 72 days. The corrosion behavior of the samples was investigated by the electrochemical impedance (EIS) test. Water transmissibility, electrical resistivity, and compressive strength of concrete were also studied. The results showed that adding inhibitors generally increased the compressive strength of concrete. It was also found that water transmissibility was reduced by the addition of inhibitors. The electrical resistivity of the samples increased slightly with increasing time up to 72 days. EIS and Tafel results have demonstrated that Arabic and guar gums are effective inhibitors for reinforced concrete structures. Furthermore, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) utilized to analyze the samples indicated that inhibitor grain size was enhanced by enhancing the concentration of the inhibitor combination, showing that the guar and Arabic inhibitor combinations were properly absorbed on the reinforcement surface. Results showed that a sample with 250 ppm Arabic gum and 250 ppm guar gum having a properly distributed inhibitor combination on the reinforcement surface creates a desirable cathode current.

19.
ACS Appl Mater Interfaces ; 14(17): 19295-19303, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35451835

RESUMEN

Thermoelectric (TE) materials can have a strong benefit to harvest thermal energy if they can be applied to large areas without losing their performance over time. One way of achieving large-area films is through hybrid materials, where a blend of TE materials with polymers can be applied as coating. Here, we present the development of all solution-processed TE ink and hybrid films with varying contents of TE Sb2Te3 and Bi2Te3 nanomaterials, along with their characterization. Using (1-methoxy-2-propyl) acetate (MPA) as the solvent and poly (methyl methacrylate) as the durable polymer, large-area homogeneous hybrid TE films have been fabricated. The conductivity and TE power factor improve with nanoparticle volume fraction, peaking around 60-70% solid material fill factor. For larger fill factors, the conductivity drops, possibly because of an increase in the interface resistance through interface defects and reduced connectivity between the platelets in the medium. The use of dodecanethiol (DDT) as an additive in the ink formulation enabled an improvement in the electrical conductivity through modification of interfaces and the compactness of the resultant films, leading to a 4-5 times increase in the power factor for both p- and n-type hybrid TE films, respectively. The observed trends were captured by combining percolation theory with analytical resistive theory, with the above assumption of increasing interface resistance and connectivity with polymer volume reduction. The results obtained on these hybrid films open a new low-cost route to produce and implement TE coatings on a large scale, which can be ideal for driving flexible, large-area energy scavenging technologies such as personal medical devices and the IoT.

20.
Materials (Basel) ; 15(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35057304

RESUMEN

In this study, the mechanical and microstructural properties of Al-Zn-Mg-Cu-Zr cast alloy with 0.1% Sc under homogeneous, dissolution, and T6 and thermomechanical treatments with the aim of increasing the volume fraction of MgZn2. Al3(Sc,Zr) reinforcing precipitates were examined by hardness, microscopic examinations, tensile tests and software analysis. The results showed that, firstly, the hardness results are well proportional to the results of the tensile properties of alloys and, secondly, the strength of the alloy with thermomechanical treatments compared to T6 treatments increased from 492 MPa to 620 MPa and the elongation increased from 8% to 17% and was 100% upgraded. Microstructural and fracture cross section investigations showed that Al3(Sc,Zr) nanosize dispersoids were evenly distributed among MgZn2 dispersoids and the alloy fracture was of semi-ductile type and nanosize dispersoids less than 10 nm were observed at the end of the dimples in the fracture section. The volume fraction of nanosize dispersoids in the whole microstructure of thermomechanical treatment samples was also much higher than that of T6 heat treated samples, so that the percentage of Al3(Sc,Zr) precipitates arrived from less than 1% in T6 operation to 8.28% in the quench-controlled thermomechanical operation (with 50% deformation). The quality index (QI) in thermomechanical treatment samples is 19% higher than T6 samples, so that this index has increased from 641 in T6 operation to 760 in samples under thermomechanical treatment due to precipitate morphology, volume fraction of precipitates, their uniform distribution in the matrix, and nano sized precipitates in samples under thermomechanical treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA