Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Deliv ; 30(1): 2241665, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37537858

RESUMEN

Canagliflozin (CFZ) is a sodium-glucose cotransporter-2 inhibitor (SGLT2) that lowers albuminuria in type-2 diabetic patients, cardiovascular, kidney, and liver disease. CFZ is classified as class IV in the Biopharmaceutical Classification System (BCS) and is characterized by low permeability, solubility, and bioavailability, most likely attributed to hepatic first-pass metabolism. Nanocrystal-based sublingual formulations were developed in the presence of sodium caprate, as a wetting agent, and as a permeability enhancer. This formulation is suitable for children and adults and could enhance solubility, permeability, and avoid enterohepatic circulation due to absorption through the sublingual mucosa. In the present study, formulations containing various surfactants (P237, P338, PVA, and PVP K30) were prepared by the Sono-homo-assisted precipitation ion technique. The optimized formula prepared with PVP-K30 showed the smallest particle size (157 ± 0.32 nm), Zeta-potential (-18 ± 0.01), and morphology by TEM analysis. The optimized formula was subsequently formulated into a sublingual tablet containing Pharma burst-V® with a shorter disintegration time (51s) for the in-vivo study. The selected sublingual tablet improved histological and biochemical markers (blood glucose, liver, and kidney function), AMP-activated protein kinase (AMPK), and protein kinase B (AKT) pathway compared to the market formula, increased CFZ's antidiabetic potency in diabetic rabbits, boosted bioavailability by five-fold, and produced faster onset of action. These findings suggest successful treatment of diabetes with CFZ nanocrystal-sublingual tablets.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nanopartículas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Conejos , Canagliflozina , Comprimidos/química , Solubilidad , Povidona/química , Permeabilidad , Nanopartículas/química
4.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36559006

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting the substantia nigra where functions controlling body movement take place. Manganese (Mn) overexposure is linked to a neurologic syndrome resembling PD. Sesamol, thymol, wheat grass (WG), and coenzyme Q10 (CoQ10) are potent antioxidants, anti-inflammatory, and anti-apoptotic nutraceuticals. We investigated the potential protective effects of these nutraceuticals alone or in combinations against MnCl2-induced PD in rats. Seven groups of adult male Sprague Dawley rats were categorized as follows: group (I) was the control, while groups 2-7 received MnCl2 either alone (Group II) or in conjunction with oral doses of sesamol (Group III), thymol (Group IV), CoQ10 (Group V), WG (Group VI), or their combination (Group VII). All rats were subjected to four behavioral tests (open-field, swimming, Y-maze, and catalepsy tests). Biochemical changes in brain levels of monoamines, ACHE, BDNF, GSK-3ß, GABA/glutamate, as well as oxidative stress, and apoptotic and neuroinflammatory biomarkers were evaluated, together with histopathological examinations of different brain regions. Mn increased catalepsy scores, while decreasing neuromuscular co-ordination, and locomotor and exploratory activity. It also impaired vigilance, spatial memory, and decision making. Most behavioral impairments induced by Mn were improved by sesamol, thymol, WG, or CoQ10, with prominent effect by sesamol and thymol. Notably, the combination group showed more pronounced improvements, which were confirmed by biochemical, molecular, as well as histopathological findings. Sesamol or thymol showed better protection against neuronal degeneration and some behavioral impairments induced by Mn than WG or CoQ10, partly via interplay between Nrf2/HO-1, TLR4/NLRP3/NF-κB, GSK-3ß and Bax/Bcl2 pathways.

5.
Saudi Pharm J ; 30(10): 1405-1417, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36387332

RESUMEN

Background: The therapeutic activity of Glyceryl trinitrate (GTN) is mainly regulated by liberating nitric oxide (NO) and reactive nitrogen species (RNS). During this biotransformation, oxidative stress and lipid peroxidation inside the red blood cells (RBCs) occur. Hemoglobin tightly binds to NO forming methemoglobin altering the erythrocytic antioxidant defense system. Aim: The principal objective of our research is to show the ameliorating effect of l-ascorbic acid for the deleterious effects of chronic administration of nitrovasodilator drugs used in cardiovascular diseases such as oxidative stresses and tolerance. Method: We studied some biochemical parameters for the oxidative stress using groups of high sucrose/fat (HSF) diet Wistar male rats chronically orally administered different concentrations of Isosorbide-5-mononitrate (ISMN) 0.3 mg/kg, 0.6 mg/kg and 1.2 mg/kg. Afterwards, we evaluated the role of l-ascorbic acid against these biochemical changes in cardiac tissues. Results: Chronic treatment with organic nitrates caused elevated serum levels of lipid peroxidation, hemoglobin derivatives as methemoglobin and carboxyhemoglobin, rate of hemoglobin autoxidation, the cellular levels of the pro-inflammatory cytokines marker (NF-κB) and apoptosis markers (caspase-3) in the myocardium muscles in a dose-dependent manner. Meanwhile, such exposure caused a decline in the enzymatic effect of SOD, GSH and CAT accompanied by a decrease in the level of mitochondrial oxidative stress marker (nrf2) in the myocardium muscles and a decrease in the serum iron and total iron-binding capacity (TIBC) in a dose-dependent manner. Concomitant treatment with l-ascorbic acid significantly diminished these changes for all examined parameters. Conclusion: Chronic administration of organic nitrates leads to the alteration of the level of oxidative stress factors in the myocardium tissue due to the generation of reactive oxygen species. Using l-ascorbic acid can effectively ameliorate such intoxication to overcome nitrate tolerance.

6.
Biomed Pharmacother ; 155: 113799, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36271575

RESUMEN

Both thymoquinone (TQ) and thymol (T) have been proved to possess a positive impact on human health. In this research, we aimed to investigate the effect of these compounds separately and together on the Attention-deficit/hyperactivity disorder (ADHD)-like behavior induced by monosodium glutamate (MSG) in rats. Forty male, Spargue Dawley rat pups (postnatal day 21), were randomly allocated into five groups: Normal saline (NS), MSG, MSG+TQ, MSG+T, and MSG+TQ+T. MSG (0.4 mg/kg/day), TQ (10 mg/kg/day) and T (30 mg/kg/day) were orally administered for 8 weeks. The behavioral tests proved that rats treated with TQ and/or T showed improved locomotor, attention and cognitive functions compared to the MSG group with more pronounced effect displayed with their combination. All treated groups showed improvement in MSG-induced aberrations in brain levels of GSH, IL-1ß, TNF-α, GFAP, glutamate, calcium, dopamine, norepinephrine, Wnt3a, ß-Catenin and BDNF. TQ and/or T treatment also enhanced the mRNA expression of Nrf2, HO-1 and Bcl2 while reducing the protein expression of TLR4, NFκB, NLRP3, caspase 1, Bax, AIF and GSK3ß as compared to the MSG group. However, the combined therapy showed more significant effects in all measured parameters. All of these findings were further confirmed by the histopathological examinations. Current results concluded that the combined therapy of TQ and T had higher protective effects than their individual supplementations against MSG-induced ADHD-like behavior in rats.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Glutamato de Sodio , Animales , Masculino , Ratas , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/prevención & control , Proteína X Asociada a bcl-2 , beta Catenina/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Calcio , Caspasa 1/metabolismo , Dopamina , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Norepinefrina , ARN Mensajero , Solución Salina , Timol/farmacología , Timol/uso terapéutico , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vía de Señalización Wnt
7.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36015156

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder that is associated with abnormal cognition. AD is aided in its initiation and progression by hereditary and environmental factors. Aluminum (Al) is a neurotoxic agent that causes oxidative stress, which is linked to AD progression. Additionally, Nrf2/HO-1, APOE4/LRP1, Wnt3/ß-catenin, and TLR4/NLRP3 are the main signaling pathways involved in AD pathogenesis. Several phytochemicals are promising options in delaying AD evolution. OBJECTIVES: This study aimed at studying the neuroprotective effects of some phytochemicals as morin (MOR), thymol (TML), and thymoquinone (TMQ) on physical and mental activities (PhM) in Al chloride (AlCl3)-induced AD rat model. Another objective was to determine the specificity of phytochemicals to AD signaling pathways using molecular docking. METHODS: Eighty male Dawley rats were divided into eight groups. Each group received: saline (control group), AlCl3, (ALAD), PhM, either alone or with a combination of MOR, TML, and/or TMQ for five weeks. Animals were then subjected to behavioral evaluation. Brain tissues were used for histopathological and biochemical analyses to determine the extent of neurodegeneration. The effect of phytochemicals on AlCl3-induced oxidative stress and the main signaling pathways involved in AD progression were also investigated. RESULTS: AlCl3 caused a decline in spatial learning and memory, as well as histopathological changes in the brains of rats. Phytochemicals combined with PhM restored antioxidant activities, increased HO-1 and Nrf2 levels, blocked inflammasome activation, apoptosis, TLR4 expression, amyloide-ß generation, and tau hyperphophorylation. They also brought ApoE4 and LRP1 levels back to normal and regulated Wnt3/ß-catenin/GSK3ß signaling pathway. CONCLUSIONS: The use of phytochemicals with PhM is a promising strategy for reducing AD by modulating Nrf2/HO-1, TLR4/NLRP3, APOE4/LRP1, and Wnt3/ß-catenin/GSK-3ß signaling pathways.

8.
Biomed Pharmacother ; 153: 113330, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35780621

RESUMEN

The current study investigated the neuroprotective activity of some drugs and nutriceuticals with antioxidant and anti-inflammatory potential on the pathogenesis of Parkinson's disease (PD). Rats were categorized into seven groups: Rats received tween80 daily for 5 weeks as a control group, MnCl2 (10 mg/kg, i.p) either alone (group II) or in combination with vinpocetine (VIN) (20 mg/kg) (group III), punicalagin (PUN) (30 mg/kg) (group IV), niacin (85 mg/kg) (group V), vitamin E (Vit E) (100 mg/kg) (group VI) or their combination (group VII). Motor activities was examined using open-field and catalepsy. Striatal monamines, acetylcholinesterase, excitatory/inhibitory neurotransmitters, redox status, pro-oxidant content, brain inflammatory, apoptotic and antioxidant biomarkers levels were assessed. Besides, histopathological investigations of different brain regions were determined. Groups (IV -GVII) showed improved motor functions of PD rats. Applied drugs significantly increased the brain levels of monoamines with the strongest effect to PUN. Meanwhile, they significantly decreased levels of acetylcholinesterase with a strongest effect to PUN. Moreover, they exhibited significant neuronal protection and anti-inflammatory abilities through significant reduction of the brain levels of COX2, TNF-α and Il-1ß with a strongest effect to the PUN. Interestingly; groups (IV - GVII) showed restored glutamate/GABA balance and exhibited a pronounced decrease in caspase-3 content and GSK-3ß protein expression levels. In addition, they significantly increased Bcl2 mRNA expression levels with a strongest effect for PUN. All these findings were further confirmed by the histopathological examinations. As a conclusion, we propose VIN and PUN to mitigate the progression of PD via their antioxidant, anti-inflammatory, anti-apoptotic, neurotrophic and neurogenic activities.


Asunto(s)
Fármacos Neuroprotectores , Niacina , Enfermedad de Parkinson , Acetilcolinesterasa , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta , Taninos Hidrolizables , Manganeso/farmacología , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Niacina/farmacología , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Alcaloides de la Vinca , Vitamina E/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...