Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Oncol ; 32(1): 200766, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596301

RESUMEN

Cancer immunotherapy requires a specific antitumor CD8+ T cell-driven immune response; however, upon genetic and epigenetic alterations of the antigen processing and presenting components, cancer cells escape the CD8+ T cell recognition. As a result, poorly immunogenic tumors are refractory to conventional immunotherapy. In this context, the use of viral cancer vaccines in combination with hypomethylating agents represents a promising strategy to prevent cancer from escaping immune system recognition. In this study, we evaluated the sensitivity of melanoma (B16-expressing ovalbumin) and metastatic triple-negative breast cancer (4T1) cell lines to FDA-approved low-dose decitabine in combination with PeptiCRAd, an adenoviral anticancer vaccine. The two models showed different sensitivity to decitabine in vitro and in vivo when combined with PeptiCRAd. In particular, mice bearing syngeneic 4T1 cancer showed higher tumor growth control when receiving the combinatorial treatment compared to single controls in association with a higher expression of MHC class I on cancer cells and reduction in Tregs within the tumor microenvironment. Furthermore, remodeling of the CD8+ T cell infiltration and cytotoxic activity toward cancer cells confirmed the effect of decitabine in enhancing anticancer vaccines in immunotherapy regimens.

2.
J Immunother Cancer ; 12(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38458776

RESUMEN

BACKGROUND: Cancer immunotherapy relies on using the immune system to recognize and eradicate cancer cells. Adaptive immunity, which consists of mainly antigen-specific cytotoxic T cells, plays a pivotal role in controlling cancer progression. However, innate immunity is a necessary component of the cancer immune response to support an immunomodulatory state, enabling T-cell immunosurveillance. METHODS: Here, we elucidated and exploited innate immune cells to sustain the generation of antigen-specific T cells on the use of our cancer vaccine platform. We explored a previously developed oncolytic adenovirus (AdCab) encoding for a PD-L1 (Programmed-Death Ligand 1) checkpoint inhibitor, which consists of a PD-1 (Programmed Cell Death Protein 1) ectodomain fused to an IgG/A cross-hybrid Fc. We coated AdCab with major histocompatibility complex (MHC-I)-restricted tumor peptides, generating a vaccine platform (named PeptiCab); the latter takes advantage of viral immunogenicity, peptide cancer specificity to prime T-cell responses, and antibody-mediated effector functions. RESULTS: As proof of concept, PeptiCab was used in murine models of melanoma and colon cancer, resulting in tumor growth control and generation of systemic T-cell-mediated antitumor responses. In specific, PeptiCab was able to generate antitumor T effector memory cells able to secrete various inflammatory cytokines. Moreover, PeptiCab was able to polarize neutrophils to attain an antigen-presenting phenotype by upregulating MHC-II, CD80 and CD86 resulting in an enhanced T-cell expansion. CONCLUSION: Our data suggest that exploiting innate immunity activates T-cell antitumor responses, enhancing the efficiency of a vaccine platform based on oncolytic adenovirus coated with MHC-I-restricted tumor peptides.


Asunto(s)
Neoplasias , Receptores de IgG , Humanos , Animales , Ratones , Inmunidad Adaptativa , Linfocitos T Citotóxicos , Citocinas/metabolismo , Neoplasias/terapia , Neoplasias/patología
3.
J Cosmet Dermatol ; 23(5): 1604-1612, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38318685

RESUMEN

BACKGROUND: The Restylane portfolio of soft tissue fillers spans a wide range of indications, due in part to their complementary manufacturing technologies [non-animal stabilized hyaluronic acid (NASHA) and Optimal Balance Technology (OBT/XpresHAn)]. Using an array of products, injectors can achieve a holistic, natural looking effect for their patients. However, with a wide range of products it may be difficult to choose an optimal combination. AIM: Simplify and align global use recommendations for NASHA versus OBT products. METHODS: Two pre-meeting surveys were completed by 11 key opinion leaders with international representation, with the goal of collecting information regarding their current injection practices for various anatomical regions of the face (i.e., temporal region, forehead, tear trough, lateral zygoma, anteromedial cheek, nose, pyriform aperture, nasolabial fold, perioral area, lips, labiomental crease, marionette lines, chin, and jawline). The data collected from these surveys was subsequently discussed in a consensus group meeting involving 11 voting members and 3 nonvoting members. RESULTS: Top product recommendations were identified for each anatomical area, along with secondary and tertiary recommendations that can also be used under defined circumstances. Recommendations were provided based on a consideration of elements such as patient features (e.g., skin thickness, bone structure), the desired aesthetic outcome, experience of the injector, and the preferred injection technique. CONCLUSION: A majority consensus regarding the top NASHA versus OBT product choice for each anatomical region of the face was reached. These recommendations represent international agreement regarding the use of Restylane products.


Asunto(s)
Consenso , Técnicas Cosméticas , Rellenos Dérmicos , Cara , Ácido Hialurónico , Ácido Hialurónico/administración & dosificación , Humanos , Rellenos Dérmicos/administración & dosificación , Técnicas Cosméticas/instrumentación , Técnicas Cosméticas/normas , Envejecimiento de la Piel/efectos de los fármacos , Geles , Guías de Práctica Clínica como Asunto
4.
Nat Commun ; 14(1): 7056, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923723

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. As the available therapeutic options show a lack of efficacy, novel therapeutic strategies are urgently needed. Given its T-cell infiltration, we hypothesized that MPM is a suitable target for therapeutic cancer vaccination. To date, research on mesothelioma has focused on the identification of molecular signatures to better classify and characterize the disease, and little is known about therapeutic targets that engage cytotoxic (CD8+) T cells. In this study we investigate the immunopeptidomic antigen-presented landscape of MPM in both murine (AB12 cell line) and human cell lines (H28, MSTO-211H, H2452, and JL1), as well as in patients' primary tumors. Applying state-of-the-art immuno-affinity purification methodologies, we identify MHC I-restricted peptides presented on the surface of malignant cells. We characterize in vitro the immunogenicity profile of the eluted peptides using T cells from human healthy donors and cancer patients. Furthermore, we use the most promising peptides to formulate an oncolytic virus-based precision immunotherapy (PeptiCRAd) and test its efficacy in a mouse model of mesothelioma in female mice. Overall, we demonstrate that the use of immunopeptidomic analysis in combination with oncolytic immunotherapy represents a feasible and effective strategy to tackle untreatable tumors.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Femenino , Animales , Ratones , Neoplasias Pleurales/tratamiento farmacológico , Mesotelioma/tratamiento farmacológico , Inmunoterapia , Péptidos/uso terapéutico , Línea Celular Tumoral , Neoplasias Pulmonares/patología
5.
Hum Gene Ther ; 34(17-18): 870-877, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37698876

RESUMEN

The use of oncolytic viruses has become an attractive tool in the clinics for the treatment of various tumor types. Such viruses are genetically modified to conditionally replicate in malignant cells while unharming healthy cells. This platform offers a highly specific tumor killing with exceptional safety profiles. However, the use of oncolytic viruses as sole oncolytic platforms has not achieved full tumor clearance in murine models and in the clinics. In fact, the formation of anti-tumor immune responses is attributed to the effectiveness of oncolytic viruses. In this review, we will discuss the various strategies that scientists have employed to enhance the anti-tumor immune responses driven by oncolytic viruses. Moreover, focus will be drawn into personalizing such anti-tumor responses by the addition of tumor-associated peptides.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Animales , Ratones , Virus Oncolíticos/genética
6.
Mol Ther Oncolytics ; 28: 264-276, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36911070

RESUMEN

Immune checkpoint inhibitors have clinical success in prolonging the life of many cancer patients. However, only a minority of patients benefit from such therapy, calling for further improvements. Currently, most PD-L1 checkpoint inhibitors in the clinic do not elicit Fc effector mechanisms that would substantially increase their efficacy. To gain potency and circumvent off-target effects, we previously designed an oncolytic adenovirus (Ad-Cab) expressing an Fc fusion peptide against PD-L1 on a cross-hybrid immunoglobulin GA (IgGA) Fc. Ad-Cab elicited antibody effector mechanisms of IgG1 and IgA, which led to higher tumor killing compared with each isotype alone and with clinically approved PD-L1 checkpoint inhibitors. In this study, we further improved the therapy to increase the IgG1 Fc effector mechanisms of the IgGA Fc fusion peptide (Ad-Cab FT) by adding four somatic mutations that increase natural killer (NK) cell activation. Ad-Cab FT was shown to work better at lower concentrations compared with Ad-Cab in vitro and in vivo and to have better tumor- and myeloid-derived suppressor cell killing, likely because of higher NK cell activation. Additionally, the biodistribution of the Fc fusion peptide demonstrated targeted release in the tumor microenvironment with minimal or no leakage to the peripheral blood and organs in mice. These data demonstrate effective and safe use of Ad-Cab FT, bidding for further clinical investigation.

7.
Front Immunol ; 14: 1060540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817448

RESUMEN

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123). Methods: Recombinant Syrian hamster PD-L1 was expressed and mice immunized for mAb formation using hybridoma technology. Clonal selection through binding and functional studies in vitro, in silico and in vivo identified anti-PD-L1 clone 11B12-1 as the primary mAb candidate for immunotherapy modelling. The oncolytic virus (OV) and ICI combination approach was then evaluated using 11B12-1 and TILT-123 in a Syrian hamster model of pancreatic ductal adenocarcinoma (PDAC). Results: Supernatants from hybridoma parent subclone 11B12B4 provided the highest positive PD-L1 signal, on Syrian hamster PBMCs and three cancer cell lines (HT100, HapT1 and HCPC1). In vitro co-cultures revealed superior immune modulated profiles of cell line matched HT100 tumour infiltrating lymphocytes when using subclones of 7G2, 11B12 and 12F1. Epitope binning and epitope prediction using AlphaFold2 and ColabFold revealed two distinct functional epitopes for clone 11B12-1 and 12F1-1. Treatment of Syrian hamsters bearing HapT1 tumours, with 11B12-1 induced significantly better (p<0.05) tumour growth control than isotype control by day 12. 12F1-1 did not induce significant tumour growth control. The combination of 11B12-1 with oncolytic adenovirus TILT-123 improved tumour growth control further, when compared to monotherapy (p<0.05) by day 26. Conclusions: Novel Syrian hamster anti-PD-L1 clone 11B12-1 induces tumour growth control in a hamster model of PDAC. Combining 11B12-1 with oncolytic adenovirus TILT-123 improves tumour growth control further and demonstrates good safety and toxicity profiles.


Asunto(s)
Carcinoma Ductal Pancreático , Virus Oncolíticos , Neoplasias Pancreáticas , Cricetinae , Animales , Ratones , Mesocricetus , Inhibidores de Puntos de Control Inmunológico , Adenoviridae , Neoplasias Pancreáticas/terapia , Inmunoterapia , Anticuerpos Monoclonales , Replicación Viral , Neoplasias Pancreáticas
8.
J Clin Immunol ; 43(2): 358-370, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36260239

RESUMEN

Abnormally high γδ T cell numbers among individuals with atypical SCID have been reported but detailed immunophenotyping and functional characterization of these expanded γδ T cells are limited. We have previously reported atypical SCID phenotype caused by hypomorphic IL2RG (NM_000206.3) c.172C > T;p.(Pro58Ser) variant. Here, we have further investigated the index patient's abnormally large γδ T cell population in terms of function and phenotype by studying IL2RG cell surface expression, STAT tyrosine phosphorylation and blast formation in response to interleukin stimulation, immunophenotyping, TCRvγ sequencing, and target cell killing. In contrast to his âºß T cells, the patient's γδ T cells showed normal IL2RG cell surface expression and normal or enhanced IL2RG-mediated signaling. Vδ2 + population was proportionally increased with a preponderance of memory phenotypes and high overall tendency towards perforin expression. The patient's γδ T cells showed enhanced cytotoxicity towards A549 cancer cells. His TCRvγ repertoire was versatile but sequencing of IL2RG revealed a novel c.534C > A; p.(Phe178Leu) somatic missense variant restricted to γδ T cells. Over time this variant became predominant in γδ T cells, though initially present only in part of them. IL2RG-Pro58Ser/Phe178Leu variant showed higher cell surface expression compared to IL2RG-Pro58Ser variant in stable HEK293 cell lines, suggesting that somatic p.(Phe178Leu) variant may at least partially rescue the pathogenic effect of germline p.(Pro58Ser) variant. In conclusion, our report indicates that expansion of γδ T cells associated with atypical SCID needs further studying and cannot exclusively be deemed as a homeostatic response to low numbers of conventional T cells.


Asunto(s)
Linfocitos Intraepiteliales , Inmunodeficiencia Combinada Grave , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X , Humanos , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Linfocitos Intraepiteliales/patología , Células HEK293 , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Subunidad gamma Común de Receptores de Interleucina/genética
9.
Front Immunol ; 13: 826164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493448

RESUMEN

Oncolytic Viruses (OVs) work through two main mechanisms of action: the direct lysis of the virus-infected cancer cells and the release of tumor antigens as a result of the viral burst. In this sc.enario, the OVs act as in situ cancer vaccines, since the immunogenicity of the virus is combined with tumor antigens, that direct the specificity of the anti-tumor adaptive immune response. However, this mechanism in some cases fails in eliciting a strong specific T cell response. One way to overcome this problem and enhance the priming efficiency is the production of genetically modified oncolytic viruses encoding one or more tumor antigens. To avoid the long and expensive process related to the engineering of the OVs, we have exploited an approach based on coating OVs (adenovirus and vaccinia virus) with tumor antigens. In this work, oncolytic viruses encoding tumor antigens and tumor antigen decorated adenoviral platform (PeptiCRAd) have been used as cancer vaccines and evaluated both for their prophylactic and therapeutic efficacy. We have first tested the oncolytic vaccines by exploiting the OVA model, moving then to TRP2, a more clinically relevant tumor antigen. Finally, both approaches have been investigated in tumor neo-antigens settings. Interestingly, both genetically modified oncolytic adenovirus and PeptiCRAd elicited T cells-specific anti-tumor responses. However, in vitro cross-representation experiments, showed an advantage of PeptiCRAd as regards the fast presentation of the model epitope SIINFEKL from OVA in an immunogenic rather than tolerogenic fashion. Here two approaches used as cancer oncolytic vaccines have been explored and characterized for their efficacy. Although the generation of specific anti-tumor T cells was elicited in both approaches, PeptiCRAd retains the advantage of being rapidly adaptable by coating the adenovirus with a different set of tumor antigens, which is crucial in personalized cancer vaccines clinical setting.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae , Antígenos de Neoplasias , Humanos , Virus Oncolíticos/genética , Péptidos , Medicina de Precisión , Vacunas de Subunidad
10.
Mol Ther Oncolytics ; 25: 137-145, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35572195

RESUMEN

Common vaccines for infectious diseases have been repurposed as cancer immunotherapies. The intratumoral administration of these repurposed vaccines can induce immune cell infiltration into the treated tumor. Here, we have used an approved trivalent live attenuated measles, mumps, and rubella (MMR) vaccine in our previously developed PeptiENV cancer vaccine platform. The intratumoral administration of this novel MMR-containing PeptiENV cancer vaccine significantly increased both intratumoral as well as systemic tumor-specific T cell responses. In addition, PeptiENV therapy, in combination with immune checkpoint inhibitor therapy, improved tumor growth control and survival as well as increased the number of mice responsive to immune checkpoint inhibitor therapy. Importantly, mice pre-vaccinated with the MMR vaccine responded equally well, if not better, to the PeptiENV therapy, indicating that pre-existing immunity against the MMR vaccine viruses does not compromise the use of this novel cancer vaccine platform.

11.
Elife ; 112022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35314027

RESUMEN

Besides the isolation and identification of major histocompatibility complex I-restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective antitumor CD8+ T-cell-mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific antitumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses. Here, we describe for the first time a streamlined pipeline for the generation of personalized cancer vaccines starting from the isolation and selection of the most immunogenic peptide candidates expressed on the tumor cells and ending in the generation of efficient therapeutic oncolytic cancer vaccines. This immunopeptidomics-based pipeline was carefully validated in a murine colon tumor model CT26. Specifically, we used state-of-the-art immunoprecipitation and mass spectrometric methodologies to isolate >8000 peptide targets from the CT26 tumor cell line. The selection of the target candidates was then based on two separate approaches: RNAseq analysis and HEX software. The latter is a tool previously developed by Jacopo, 2020, able to identify tumor antigens similar to pathogen antigens in order to exploit molecular mimicry and tumor pathogen cross-reactive T cells in cancer vaccine development. The generated list of candidates (26 in total) was further tested in a functional characterization assay using interferon-γ enzyme-linked immunospot (ELISpot), reducing the number of candidates to six. These peptides were then tested in our previously described oncolytic cancer vaccine platform PeptiCRAd, a vaccine platform that combines an immunogenic oncolytic adenovirus (OAd) coated with tumor antigen peptides. In our work, PeptiCRAd was successfully used for the treatment of mice bearing CT26, controlling the primary malignant lesion and most importantly a secondary, nontreated, cancer lesion. These results confirmed the feasibility of applying the described pipeline for the selection of peptide candidates and generation of therapeutic oncolytic cancer vaccine, filling a gap in the field of cancer immunotherapy, and paving the way to translate our pipeline into human therapeutic approach.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Adenoviridae , Animales , Antígenos de Neoplasias , Linfocitos T CD8-positivos , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Inmunoterapia/métodos , Ratones , Neoplasias/tratamiento farmacológico , Péptidos
12.
ACS Nano ; 15(10): 15992-16010, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34605646

RESUMEN

Identification of HLA class I ligands from the tumor surface (ligandome or immunopeptidome) is essential for designing T-cell mediated cancer therapeutic approaches. However, the sensitivity of the process for isolating MHC-I restricted tumor-specific peptides has been the major limiting factor for reliable tumor antigen characterization, making clear the need for technical improvement. Here, we describe our work from the fabrication and development of a microfluidic-based chip (PeptiCHIP) and its use to identify and characterize tumor-specific ligands on clinically relevant human samples. Specifically, we assessed the potential of immobilizing a pan-HLA antibody on solid surfaces via well-characterized streptavidin-biotin chemistry, overcoming the limitations of the cross-linking chemistry used to prepare the affinity matrix with the desired antibodies in the immunopeptidomics workflow. Furthermore, to address the restrictions related to the handling and the limited availability of tumor samples, we further developed the concept toward the implementation of a microfluidic through-flow system. Thus, the biotinylated pan-HLA antibody was immobilized on streptavidin-functionalized surfaces, and immune-affinity purification (IP) was carried out on customized microfluidic pillar arrays made of thiol-ene polymer. Compared to the standard methods reported in the field, our methodology reduces the amount of antibody and the time required for peptide isolation. In this work, we carefully examined the specificity and robustness of our customized technology for immunopeptidomics workflows. We tested this platform by immunopurifying HLA-I complexes from 1 × 106 cells both in a widely studied B-cell line and in patients-derived ex vivo cell cultures, instead of 5 × 108 cells as required in the current technology. After the final elution in mild acid, HLA-I-presented peptides were identified by tandem mass spectrometry and further investigated by in vitro methods. These results highlight the potential to exploit microfluidics-based strategies in immunopeptidomics platforms and in personalized immunopeptidome analysis from cells isolated from individual tumor biopsies to design tailored cancer therapeutic vaccines. Moreover, the possibility to integrate multiple identical units on a single chip further improves the throughput and multiplexing of these assays with a view to clinical needs.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Microfluídica , Antígenos de Neoplasias , Humanos , Ligandos , Péptidos
13.
J Immunother Cancer ; 9(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34362830

RESUMEN

BACKGROUND: Despite the success of immune checkpoint inhibitors against PD-L1 in the clinic, only a fraction of patients benefit from such therapy. A theoretical strategy to increase efficacy would be to arm such antibodies with Fc-mediated effector mechanisms. However, these effector mechanisms are inhibited or reduced due to toxicity issues since PD-L1 is not confined to the tumor and also expressed on healthy cells. To increase efficacy while minimizing toxicity, we designed an oncolytic adenovirus that secretes a cross-hybrid Fc-fusion peptide against PD-L1 able to elicit effector mechanisms of an IgG1 and also IgA1 consequently activating neutrophils, a population neglected by IgG1, in order to combine multiple effector mechanisms. METHODS: The cross-hybrid Fc-fusion peptide comprises of an Fc with the constant domains of an IgA1 and IgG1 which is connected to a PD-1 ectodomain via a GGGS linker and was cloned into an oncolytic adenovirus. We demonstrated that the oncolytic adenovirus was able to secrete the cross-hybrid Fc-fusion peptide able to bind to PD-L1 and activate multiple immune components enhancing tumor cytotoxicity in various cancer cell lines, in vivo and ex vivo renal-cell carcinoma patient-derived organoids. RESULTS: Using various techniques to measure cytotoxicity, the cross-hybrid Fc-fusion peptide expressed by the oncolytic adenovirus was shown to activate Fc-effector mechanisms of an IgA1 (neutrophil activation) as well as of an IgG1 (natural killer and complement activation). The activation of multiple effector mechanism simultaneously led to significantly increased tumor killing compared with FDA-approved PD-L1 checkpoint inhibitor (Atezolizumab), IgG1-PDL1 and IgA-PDL1 in various in vitro cell lines, in vivo models and ex vivo renal cell carcinoma organoids. Moreover, in vivo data demonstrated that Ad-Cab did not require CD8+ T cells, unlike conventional checkpoint inhibitors, since it was able to activate other effector populations. CONCLUSION: Arming PD-L1 checkpoint inhibitors with Fc-effector mechanisms of both an IgA1 and an IgG1 can increase efficacy while maintaining safety by limiting expression to the tumor using oncolytic adenovirus. The increase in tumor killing is mostly attributed to the activation of multiple effector populations rather than activating a single effector population leading to significantly higher tumor killing.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inmunoterapia/métodos , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Inmunoglobulina A/administración & dosificación , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/inmunología , Neoplasias/virología , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Organoides , Receptores Fc/administración & dosificación , Receptores Fc/genética , Receptores Fc/inmunología
14.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34266884

RESUMEN

BACKGROUND: Intratumoral BCG therapy, one of the earliest immunotherapies, can lead to infiltration of immune cells into a treated tumor. However, an increase in the number of BCG-induced tumor-specific T cells in the tumor microenvironment could lead to enhanced therapeutic effects. METHODS: Here, we have developed a novel cancer vaccine platform based on BCG that can broaden BCG-induced immune responses to include tumor antigens. By physically attaching tumor-specific peptides onto the mycobacterial outer membrane, we were able to induce strong systemic and intratumoral T cell-specific immune responses toward the attached tumor antigens. These therapeutic peptides can be efficiently attached to the mycobacterial outer membrane using a poly-lysine sequence N-terminally fused to the tumor-specific peptides. RESULTS: Using two mouse models of melanoma and a mouse model of colorectal cancer, we observed that the antitumor immune responses of BCG could be improved by coating the BCG with tumor-specific peptides. In addition, by combining this novel cancer vaccine platform with anti-programmed death 1 (anti-PD-1) immune checkpoint inhibitor (ICI) therapy, the number of responders to anti-PD-1 immunotherapy was markedly increased. CONCLUSIONS: This study shows that intratumoral BCG immunotherapy can be improved by coating the bacteria with modified tumor-specific peptides. In addition, this improved BCG immunotherapy can be combined with ICI therapy to obtain enhanced tumor growth control. These results warrant clinical testing of this novel cancer vaccine platform.


Asunto(s)
Vacuna BCG/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Inmunoterapia/métodos , Medicina de Precisión/métodos , Animales , Vacuna BCG/farmacología , Vacunas contra el Cáncer/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones
15.
Cancer Immunol Res ; 9(8): 981-993, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103348

RESUMEN

Molecular mimicry is one of the leading mechanisms by which infectious agents can induce autoimmunity. Whether a similar mechanism triggers an antitumor immune response is unexplored, and the role of antiviral T cells infiltrating the tumor has remained anecdotal. To address these questions, we first developed a bioinformatic tool to identify tumor peptides with high similarity to viral epitopes. Using peptides identified by this tool, we demonstrated that, in mice, preexisting immunity toward specific viral epitopes enhanced the efficacy of cancer immunotherapy via molecular mimicry in different settings. To understand whether this mechanism could partly explain immunotherapy responsiveness in humans, we analyzed a cohort of patients with melanoma undergoing anti-PD1 treatment who had a high IgG titer for cytomegalovirus (CMV). In this cohort of patients, we showed that high levels of CMV-specific antibodies were associated with prolonged progression-free survival and found that, in some cases, peripheral blood mononuclear cells (PBMC) could cross-react with both melanoma and CMV homologous peptides. Finally, T-cell receptor sequencing revealed expansion of the same CD8+ T-cell clones when PBMCs were expanded with tumor or homologous viral peptides. In conclusion, we have demonstrated that preexisting immunity and molecular mimicry could influence the response to immunotherapies. In addition, we have developed a free online tool that can identify tumor antigens and neoantigens highly similar to pathogen antigens to exploit molecular mimicry and cross-reactive T cells in cancer vaccine development.


Asunto(s)
Inmunidad/inmunología , Inmunoterapia/métodos , Melanoma/inmunología , Imitación Molecular/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones
16.
Mol Ther Methods Clin Dev ; 20: 625-634, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33718513

RESUMEN

Oncolytic adenoviruses have become ideal agents in the path toward treating cancer. Such viruses have been engineered to conditionally replicate in malignant cells in which certain signaling pathways have been disrupted. Other than such oncolytic properties, the viruses need to activate the immune system in order to sustain a long-term response. Therefore, oncolytic adenoviruses have been genetically modified to express various immune-stimulatory agents to achieve this. However, genetically modifying adenoviruses is very time consuming and labor intensive with the current available methods. In this paper, we describe a novel method we have called GAMER-Ad to genetically modify adenovirus genomes within 2 days. Our method entails the replacement of the gp19k gene in the E3 region with any given gene of interest (GOI) using Gibson Assembly avoiding the homologous recombination between the shuttle and the parental plasmid. In this manuscript as proof of concept we constructed and characterized three oncolytic adenoviruses expressing CXCL9, CXCL10, and interleukin-15 (IL-15). We demonstrate that our novel method is fast, reliable, and simple compared to other methods. We anticipate that our method will be used in the future to genetically engineer oncolytic but also other adenoviruses used for gene therapy as well.

17.
Cancer Res ; 81(12): 3149-3155, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33687948

RESUMEN

Cancer immunotherapy has revolutionized the way tumors are treated. Nevertheless, efficient and robust testing platforms are still missing, including clinically relevant human ex vivo tumor assays that allow pretreatment testing of cancer therapies and selection of the most efficient and safe therapy for a specific patient. In the case of immunotherapy, this testing platform would require not only cancer cells, but also the tumor microenvironment, including immune cells. Here, we discuss the applications of patient-derived tumor organoid cultures and the possibilities in using complex immune-organoid cultures to provide preclinical testing platforms for precision cancer immunotherapy.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Organoides/efectos de los fármacos , Medicina de Precisión , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/patología , Organoides/inmunología , Organoides/patología
18.
MAbs ; 12(1): 1795505, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32744145

RESUMEN

Current combination therapies elicit high response rates in B cell malignancies, often using CD20 antibodies as the backbone of therapy. However, many patients eventually relapse or develop progressive disease. Therefore, novel CD20 antibodies combining multiple effector mechanisms were generated. To study whether neutrophil-mediated destruction of B cell malignancies can be added to the arsenal of effector mechanisms, we chimerized a panel of five previously described murine CD20 antibodies to the human IgG1, IgA1 and IgA2 isotype. Of this panel, we assessed in vitro antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and direct cell death induction capacity and studied the efficacy in two different in vivo mouse models. IgA antibodies outperformed IgG1 antibodies in neutrophil-mediated killing in vitro, both against CD20-expressing cell lines and primary patient material. In these assays, we observed loss of CD19 with both IgA and IgG antibodies. Therefore, we established a novel method to improve the assessment of B-cell depletion by CD20 antibodies by including CD24 as a stable cell marker. Subsequently, we demonstrated that only IgA antibodies were able to reduce B cell numbers in this context. Additionally, IgA antibodies showed efficacy in both an intraperitoneal tumor model with EL4 cells expressing huCD20 and in an adoptive transfer model with huCD20-expressing B cells. Taken together, we show that IgA, like IgG, can induce ADCC and CDC, but additionally triggers neutrophils to kill (malignant) B cells. We conclude that antibodies of the IgA isotype offer an attractive repertoire of effector mechanisms for the treatment of CD20-expressing malignancies.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD20/inmunología , Linfocitos B/inmunología , Neoplasias Hematológicas/inmunología , Inmunoglobulina A/farmacología , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/inmunología , Activación Neutrófila/efectos de los fármacos , Neutrófilos/inmunología , Animales , Linfocitos B/patología , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/patología , Humanos , Inmunoglobulina A/inmunología , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neutrófilos/patología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cancer Res ; 80(12): 2575-2585, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32107211

RESUMEN

Because of the high coverage of international vaccination programs, most people worldwide have been vaccinated against common pathogens, leading to acquired pathogen-specific immunity with a robust memory T-cell repertoire. Although CD8+ antitumor cytotoxic T lymphocytes (CTL) are the preferred effectors of cancer immunotherapy, CD4+ T-cell help is also required for an optimal antitumor immune response to occur. Hence, we investigated whether the pathogen-related CD4+ T-cell memory populations could be reengaged to support the CTLs, converting a weak primary antitumor immune response into a stronger secondary one. To this end, we used our PeptiCRAd technology that consists of an oncolytic adenovirus coated with MHC-I-restricted tumor-specific peptides and developed it further by introducing pathogen-specific MHC-II-restricted peptides. Mice preimmunized with tetanus vaccine were challenged with B16.OVA tumors and treated with the newly developed hybrid TT-OVA-PeptiCRAd containing both tetanus toxoid- and tumor-specific peptides. Treatment with the hybrid PeptiCRAd significantly enhanced antitumor efficacy and induced TT-specific, CD40 ligand-expressing CD4+ T helper cells and maturation of antigen-presenting cells. Importantly, this approach could be extended to naturally occurring tumor peptides (both tumor-associated antigens and neoantigens), as well as to other pathogens beyond tetanus, highlighting the usefulness of this technique to take full advantage of CD4+ memory T-cell repertoires when designing immunotherapeutic treatment regimens. Finally, the antitumor effect was even more prominent when combined with the immune checkpoint inhibitor anti-PD-1, strengthening the rationale behind combination therapy with oncolytic viruses. SIGNIFICANCE: These findings establish a novel technology that enhances oncolytic cancer immunotherapy by capitalizing on pre-acquired immunity to pathogens to convert a weak antitumor immune response into a much stronger one.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Vacuna contra Difteria, Tétanos y Tos Ferina/administración & dosificación , Memoria Inmunológica , Inmunoterapia/métodos , Melanoma Experimental/terapia , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Antineoplásicos Inmunológicos/administración & dosificación , Linfocitos T CD4-Positivos/inmunología , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral/trasplante , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Vacuna Antipolio de Virus Inactivados/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Citotóxicos/inmunología , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/inmunología
20.
Nat Commun ; 10(1): 5747, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848338

RESUMEN

Virus-based cancer vaccines are nowadays considered an interesting approach in the field of cancer immunotherapy, despite the observation that the majority of the immune responses they elicit are against the virus and not against the tumor. In contrast, targeting tumor associated antigens is effective, however the identification of these antigens remains challenging. Here, we describe ExtraCRAd, a multi-vaccination strategy focused on an oncolytic virus artificially wrapped with tumor cancer membranes carrying tumor antigens. We demonstrate that ExtraCRAd displays increased infectivity and oncolytic effect in vitro and in vivo. We show that this nanoparticle platform controls the growth of aggressive melanoma and lung tumors in vivo both in preventive and therapeutic setting, creating a highly specific anti-cancer immune response. In conclusion, ExtraCRAd might serve as the next generation of personalized cancer vaccines with enhanced features over standard vaccination regimens, representing an alternative way to target cancer.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Inmunoterapia/métodos , Neoplasias/terapia , Virus Oncolíticos/inmunología , Vacunación/métodos , Adenoviridae/inmunología , Animales , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral/citología , Línea Celular Tumoral/inmunología , Línea Celular Tumoral/trasplante , Membrana Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Inyecciones Intralesiones , Ratones , Nanopartículas/administración & dosificación , Neoplasias/inmunología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...