Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14371, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909060

RESUMEN

Advanced recycling offers a unique opportunity for the circular economy, especially for mixed and contaminated plastics that are difficult to recycle mechanically. However, advanced recycling has barriers such as poor selectivity, contaminant sensitivity, and the need for expensive catalysts. Reported herein is a simple yet scalable methodology for converting mixed polyethylene (high-density and low-density polyethylene recycled polyethylene) into upcycled waxes with up to 94% yield. This high yield was possible by performing the reaction at a mild temperature and was enabled by using inexpensive and reusable table salt. Without table salt, in otherwise identical conditions, the plastic remained essentially undegraded. These upcycled waxes were used as prototypes for applications such as water- and oil-resistant paper, as well as rheology modifiers for plastics. Their performance is similar to that of commercial wax as well as rheology modifiers. A preliminary economic analysis shows that the upcycled waxes obtained by this table salt-catalyzed approach offer three times more revenue than those reported in the literature. This pioneering discovery opens the door for a circular economy of plastics in general and polyolefins in particular.

2.
Polymers (Basel) ; 16(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38611264

RESUMEN

Polyethylene-, polyvinylidene chloride-, and per- and polyfluoroalkyl substance-coated paper generate microplastics or fluorochemicals in the environment. Here, we report an approach for the development of oil-resistant papers using an environmentally friendly, fluorine-free, water-dispersible poly(dimethylsiloxane) (PDMS) coating on kraft paper. Carboxylic-functionalized PDMS (PDMS-COOH) was synthesized and subsequently neutralized with ammonium bicarbonate to obtain a waterborne emulsion, which was then coated onto kraft paper. The water resistance of the coated paper was determined via Cobb60 measurements. The Cobb60 value was reduced to 2.70 ± 0.14 g/m2 as compared to 87.6 ± 5.1 g/m2 for uncoated paper, suggesting a remarkable improvement in water resistance. Similarly, oil resistance was found to be 12/12 on the kit test scale versus 0/12 for uncoated paper. In addition, the coated paper retained 70-90% of its inherent mechanical properties, and more importantly, the coated paper was recycled via pulp recovery using a standard protocol with a 91.1% yield.

3.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986525

RESUMEN

1,3,4-Oxadiazole moiety is a crucial pharmacophore in many biologically active compounds. In a typical synthesis, probenecid was subjected to a sequence of reactions to obtain a 1,3,4-oxadiazole-phthalimide hybrid (PESMP) in high yields. The NMR (1H and 13C) spectroscopic analysis initially confirmed the structure of PESMP. Further spectral aspects were validated based on a single-crystal XRD analysis. Experimental findings were confirmed afterwards by executing a Hirshfeld surface (HS) analysis and quantum mechanical computations. The HS analysis showed the role of the π⋯π stacking interactions in PESMP. PESMP was found to have a high stability and lower reactivity in terms of global reactivity parameters. α-Amylase inhibition studies revealed that the PESMP was a good inhibitor of α-amylase with an s value of 10.60 ± 0.16 µg/mL compared with that of standard acarbose (IC50 = 8.80 ± 0.21 µg/mL). Molecular docking was also utilized to reveal the binding pose and features of PESMP against the α-amylase enzyme. Via docking computations, the high potency of PESMP and acarbose towards the α-amylase enzyme was unveiled and confirmed by docking scores of -7.4 and -9.4 kcal/mol, respectively. These findings shine a new light on the potential of PESMP compounds as α-amylase inhibitors.

4.
J Enzyme Inhib Med Chem ; 37(1): 1464-1478, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35616297

RESUMEN

Sulphonamide and 1,3,4-oxadiazole moieties are present as integral structural parts of many drugs and pharmaceuticals. Taking into account the significance of these moieties, we herein present the synthesis, single-crystal X-ray analysis, DFT studies, and α-amylase inhibition of probenecid derived two S-alkylphthalimide-oxadiazole-benzenesulfonamide hybrids. The synthesis has been accomplished in high yields. The final structures of both hybrids have been established completely with the help of different spectro-analytical techniques, including NMR, FTIR, HR-MS, and single-crystal X-ray diffraction analyses. In an effort to confirm the experimental findings, versatile quantum mechanical calculations and Hirshfeld Surface analysis have been performed. α-Amylase inhibition assay has been executed to investigate the enzyme inhibitory potential of both hybrids. The low IC50 value (76.92 ± 0.19 µg/mL) of hybrid 2 shows the good α-amylase inhibition potential of the respective compound. Ultimately, the binding affinities and features of the two hybrids are elucidated utilising a molecular docking technique against the α-amylase enzyme.


Asunto(s)
Oxadiazoles , alfa-Amilasas , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxadiazoles/farmacología , Probenecid , Sulfonamidas/química , Sulfonamidas/farmacología , Difracción de Rayos X , Bencenosulfonamidas
5.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36678507

RESUMEN

New S-alkyl phthalimide 5a-f and S-benzyl 6a-d analogs of 5-(2-phenylquinolin-4-yl)-1,3,4-oxadiazole-2-thiol (4) were prepared by reacting 4 with N-bromoalkylphthalimide and CF3-substituted benzyl bromides in excellent yields. Spectroscopic techniques were employed to elucidate the structures of the synthesized molecules. The inhibition activity of newly synthesized molecules toward MAO-A, MAO-B, and AChE enzymes, was also assessed. All these compounds showed activity in the submicromolar range against all enzymes. Compounds 5a and 5f were found to be the most potent compounds against MAO-A (IC50 = 0.91 ± 0.15 nM) and MAO-B (IC50 = 0.84 ± 0.06 nM), while compound 5c showed the most efficient acetylcholinesterase inhibition (IC50 = 1.02± 0.65 µM). Docking predictions disclosed the docking poses of the synthesized molecules with all enzymes and demonstrated the outstanding potency of compounds 5a, 5f, and 5c (docking scores = -11.6, -15.3, and -14.0 kcal/mol against MAO-A, MAO-B, and AChE, respectively). These newly synthesized analogs act as up-and-coming candidates for the creation of safer curative use against Alzheimer's illness.

6.
Bioorg Chem ; 96: 103567, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32062063

RESUMEN

Direct acting antiviral drugs (DAADs) are becoming therapeutics of choice for the treatment of viral infections. Successful development of anti HIV and HCV drugs by targeting the viral proteases has provided impetus for discovering newer DAADs. Dengue virus (DENV) protease, which is composed of two nonstructural proteins, NS2B and NS3pro, can be likewise exploited for discovering new anti-dengue therapeutics. In this study, we have linked together two pharmaceutically interesting motifs, namely 1,3,4-oxadiazole and benzenesulfonamide in two alternative series to develop novel S-benzylated and S-alkylphthalimidated hybrids. For the first series of hybrids, 4-aminobenzoic acid (1) was reacted with substituted benzenesulfonyl chlorides via its amino group, whereas the carboxylic acid side was elaborated to sulfonamido-1,3,4-oxadiazole-2-thiols (6a/b) in three steps. At this stage, the intermediates 6a/b were bifurcated to either S-alkylphthalimidated (8a-j) or S-benzylated (9a-c) hybrids by reacting with corresponding halides. For the alternative series of hybrids, the carboxylic acid group of probenecid (10) was similarly elaborated to sulfonamido-1,3,4-oxadiazole-2-thiols (13), and diverged to S-alkylphthalimidated (14a-f) and S-benzylated hybrids (15a-e). Bioactivity assays demonstrated that 8g and 8h are the most potent inhibitors among the synthesized analogs, exhibiting the IC50 values of 13.9 µM and 15.1 µM, respectively. Computational assessment predicted the binding of the inhibitors at an allosteric site developed in the open conformation of DENV2 NS2B/NS3pro. Taken together these findings point out that the synthesized hybrid inhibitors possess a great potential for further antiviral drug development.


Asunto(s)
Virus del Dengue/enzimología , Oxadiazoles/química , Oxadiazoles/farmacología , Ftalimidas/química , Ftalimidas/farmacología , Inhibidores de Proteasas/farmacología , Serina Endopeptidasas/efectos de los fármacos , Sulfonamidas/química , Sulfonamidas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Sitio Alostérico , Antivirales/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Simulación del Acoplamiento Molecular , Oxadiazoles/síntesis química , Análisis Espectral/métodos , Sulfonamidas/síntesis química , Bencenosulfonamidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...