Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 148: 107437, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749114

RESUMEN

In our study, a series of quinazoline-1,2,3-triazole hybrids (14a-r) have been designed and synthesized as multi-target EGFR, VEGFR-2, and Topo II inhibitors. All synthesized hybrids were assessed for their anticancer capacity. MTT assay revealed that compounds 14a, 14d, and 14k were the most potent hybrids against four cancer cell lines, HeLa, HePG-2, MCF-7, and HCT-116 at low micromolar range while exhibiting good selectivity against normal cell line WI-38. Sequentially, the three compounds were evaluated for EGFR, VEGFR-2, and Topo II inhibition. Compound 14d was moderate EGFR inhibitor (IC50 0.103 µM) compared to Erlotinib (IC50 0.049 µM), good VEGFR-2 inhibitor (IC50 0.069 µM) compared to Sorafenib (IC50 0.031 µM), and stronger Topo II inhibitor (IC50 19.74 µM) compared to Etoposide (IC50 34.19 µM) by about 1.7 folds. Compounds 14k and 14a represented strong inhibitory activity against Topo II with (IC50 31.02 µM and 56.3 µM) respectively, compared to Etoposide. Additionally, cell cycle analysis and apoptotic induction were performed. Compound 14d arrested the cell cycle on HeLa at G2/M phase by 17.53 % and enhanced apoptosis by 44.08 %. A molecular Docking study was implemented on the three hybrids and showed proper binding interaction with EGFR, VEGFR-2, and Topo II active sites.


Asunto(s)
Antineoplásicos , Proliferación Celular , ADN-Topoisomerasas de Tipo II , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Simulación del Acoplamiento Molecular , Triazoles , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Relación Estructura-Actividad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Proliferación Celular/efectos de los fármacos , Estructura Molecular , ADN-Topoisomerasas de Tipo II/metabolismo , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/síntesis química
2.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731418

RESUMEN

Cisplatin is a potent compound in anti-tumor chemotherapy; however, its clinical utility is hampered by dose-limiting nephrotoxicity. This study investigated whether papaverine could mitigate cisplatin-induced kidney damage while preserving its chemotherapeutic efficacy. Integrative bioinformatics analysis predicted papaverine modulation of the mechanistic pathways related to cisplatin renal toxicity; notably, mitogen-activated protein kinase 1 (MAPK1) signaling. We validated protective effects in normal kidney cells without interfering with cisplatin cytotoxicity on a cancer cell line. Concurrent in vivo administration of papaverine alongside cisplatin in rats prevented elevations in nephrotoxicity markers, including serum creatinine, blood urea nitrogen, and renal oxidative stress markers (malondialdehyde, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines), as tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). Papaverine also reduced apoptosis markers such as Bcl2 and Bcl-2-associated X protein (Bax) and kidney injury molecule-1 (KIM-1), and histological damage. In addition, it upregulates antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) while boosting anti-inflammatory signaling interleukin-10 (IL-10). These effects were underlined by the ability of Papaverine to downregulate MAPK-1 expression. Overall, these findings show papaverine could protect against cisplatin kidney damage without reducing its cytotoxic activity. Further research would allow the transition of these results to clinical practice.


Asunto(s)
Cisplatino , Inflamación , Estrés Oxidativo , Papaverina , Cisplatino/efectos adversos , Papaverina/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Ratas , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/inducido químicamente , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Masculino , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Sustancias Protectoras/farmacología , Antioxidantes/farmacología , Citocinas/metabolismo , Simulación por Computador , Biomarcadores
3.
Saudi Pharm J ; 31(11): 101803, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37860686

RESUMEN

Spirochromanes incorporating Schiff's bases and semicarbazones 4a-e and 5a-j were synthesizedand analyzed for their potential antiproliferative activity using four human cancer cell lines (MCF-7, HCT-116, PC3, and A549). Compounds 5a, 5b and 5g possessed the highest antiproliferative activity among the tested compounds,with an IC50 range of 1.154-9.09 µM. Compound 5j selectively inhibited the PC3 cell proliferation (IC50 = 5.47 µM). Spirochromanes 5a, 5b and 5g exhibited high inhibitory activity against EGFR (IC50 = 0.116, 0.132, and 0.077 µM, respectively) and HER2 (IC50 = 0.055, 0.210 and 0.085 µM, respectively) compared with the references, erlotinib (IC50 = 0.090 and 0.038 µM, respectively) and gefitinib (IC50 = 0.052 and 0.072 µM, respectively). Cell cycle analysis and apoptosis results showed that compounds 5a, 5b and 5g arrested growth inthe S phase, and the programmed cell death induced by these compounds was an apoptotic mechanism rather than a necrotic pathway. Molecular docking studies of spirochromanes 5a, 5b and 5g to EGFR and HER2 binding sites were performed to explore the orientation mode and interaction.

4.
J Enzyme Inhib Med Chem ; 38(1): 2231170, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470409

RESUMEN

This research study describes the development of new small molecules based on 2,4-thiazolidinedione (2,4-TZD) and their aldose reductase (AR) inhibitory activities. The synthesis of 17 new derivatives of 2,4-TZDs hybrids was feasible by incorporating two known bioactive scaffolds, benzothiazole heterocycle, and nitro phenacyl moiety. The most active hybrid (8b) was found to inhibit AR in a non-competitive manner (0.16 µM), as confirmed by kinetic studies and molecular docking simulations. Furthermore, the in vivo experiments demonstrated that compound 8b had a significant hypoglycaemic effect in mice with hyperglycaemia induced by streptozotocin. Fifty milligrams per kilogram dose of 8b produced a marked decrease in blood glucose concentration, and a lower dose of 5 mg/kg demonstrated a noticeable antihyperglycaemic effect. These outcomes suggested that compound 8b may be used as a promising therapeutic agent for the treatment of diabetic complications.


Asunto(s)
Aldehído Reductasa , Hipoglucemiantes , Animales , Ratones , Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hipoglucemiantes/farmacología , Cinética , Simulación del Acoplamiento Molecular , Tiazolidinas/farmacología
5.
Bioorg Chem ; 139: 106716, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37459825

RESUMEN

In the present work, the anti-inflammatory effect of 30 compounds containing 3-fluorophenyl pyrimidinylimidazo[2,1-b]thiazole was investigated. All final target compounds showed significant Inhibitory effect on p38α. P38α is considered one of the key kinases in the inflammatory process due to its regulatory effect on pro-inflammatory mediators. The final target compounds divided into four group based on the type of terminal moiety (amide and sulfonamide) and the linker between pyrimidine ring and terminal moiety (ethyl and propyl). Most compounds with terminal sulfonamide moiety and propyl linker between the sulfonamide and pyrimidine ring were the most potent among all synthesized final target compounds with sub-micromolar IC50s. Compound 24g (with p-Cl benzene sulfonamide and propyl linker) exhibited the highest activity over P38α with IC50 0.68 µM. All final target compounds were tested for their ability to inhibit nitric oxide release and prostaglandin E2 production. Compounds having amide terminal moiety with ethyl linker showed higher inhibitory activity for nitric oxide release and compound 21d exhibited the highest activity for nitric oxide release with IC50 1.21 µM. Compounds with terminal sulfonamide moiety and propyl linker showed the highest activity for inhibiting PGE2 production and compounds 24i and 24g had the lowest IC50s with value 0.87 and 0.89 µM, respectively. Compounds 21d, 22d and 24g were tested for their ability to inhibit over expression of iNOS, COX1, and COX2. In addition the ability of compounds 21d, 22d and 24g to inhibit inflammatory cytokines were determined. Finally molecular docking of the three compounds were performed on P38α crystal structure to expect their mode of binding.


Asunto(s)
Óxido Nítrico , Tiazoles , Tiazoles/farmacología , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/química , Sulfonamidas/química , Amidas , Pirimidinas/farmacología , Relación Estructura-Actividad , Estructura Molecular
6.
J Enzyme Inhib Med Chem ; 38(1): 2162511, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36633257

RESUMEN

A novel series of 12 antipyrine derivatives containing 1,3,4-oxadiazoles (4a-d), 1,3,4-thiadiazoles (6a-d), and pyrimidines (8a-d), was preparedand assessed for its potential in vitro COX-2 inhibitors. Compared to Celecoxib, compounds 4b-d and 8d were the most potent derivatives c with a half-maximal inhibitory concentration range of 53-69 nM. Considering COX-2 selectivity index, compounds 4 b and 4c were chosen among these most potent derivatives for further investigation. The in vivo ability of compounds 4 b and 4c to counteract carrageenan-induced paw edoema has been assessed and their potential underlying mechanisms have been elucidated and the results have been further validated using molecular docking simulations.


Asunto(s)
Antiinflamatorios , Antipirina , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antipirina/farmacología , Celecoxib/farmacología , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Diseño de Fármacos , Edema/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
7.
J Enzyme Inhib Med Chem ; 38(1): 2166036, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36691927

RESUMEN

A new series of 2-aminobenzothiazole hybrids linked to thiazolidine-2,4-dione 4a-e, 1,3,4-thiadiazole aryl urea 6a-d, and cyanothiouracil moieties 8a-d was synthesised. The in vitro antitumor effect of the new hybrids was assessed against three cancer cell lines, namely, HCT-116, HEPG-2, and MCF-7 using Sorafenib (SOR) as a standard drug. Among the tested compounds, 4a was the most potent showing IC50 of 5.61, 7.92, and 3.84 µM, respectively. Furthermore, compounds 4e and 8a proved to have strong impact on breast cancer cell line with IC50 of 6.11 and 10.86 µM, respectively. The three compounds showed a good safety profile towards normal WI-38 cells. Flow cytometric analysis of the three compounds in MCF-7 cells revealed that compounds 4a and 4c inhibited cell population in the S phase, whereas 8a inhibited the population in the G1/S phase. The most promising compounds were subjected to a VEGFR-2 inhibitory assay where 4a emerged as the best active inhibitor of VEGFR-2 with IC50 91 nM, compared to 53 nM for SOR. In silico analysis showed that the three new hybrids succeeded to link to the active site like the co-crystallized inhibitor SOR.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Benzotiazoles/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Sorafenib/farmacología , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
8.
J Enzyme Inhib Med Chem ; 38(1): 2166037, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36651111

RESUMEN

Multi-target inhibitors represent useful anticancer agents with superior therapeutic attributes. Here in, two novel series of benzimidazole-triazole hybrids were designed, synthesised as multi-target EGFR, VEGFR-2 and Topo II inhibitors, and evaluated for anticancer activity. Compounds 5a and 6g were the most potent analogues against four cancer cell lines, HepG-2, HCT-116, MCF-7 and HeLa, and were further evaluated for EGFR, VEGFR-2, and Topo II inhibition. Compound 5a was especially good inhibitor for EGFR (IC50 = 0.086 µM) compared to Gefitinib (IC50 = 0.052 µM), moderate VEGFR-2 inhibitor (IC50 = 0.107 µM) compared to Sorafenib (IC50 = 0.0482 µM), and stronger Topo II inhibitor (IC50 = 2.52 µM) than Doxorubicin (IC50 = 3.62 µM). Compound 6g exhibited moderate EGFR and VEGFR-2 inhibition and weaker Topo II inhibition. DNA binding assay, cell cycle analysis, apoptotic induction, molecular docking, and physicochemical studies were additionally implemented to explore the plausible mechanism of the active compounds.


Asunto(s)
Antineoplásicos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Triazoles/farmacología , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Receptores ErbB/metabolismo , Bencimidazoles/farmacología , Bencimidazoles/química , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas/farmacología
9.
Eur J Med Chem ; 244: 114827, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242988

RESUMEN

The antitumor activity of the newly synthesized 5-arylidenethiazolidine-2,4-dione derivatives 18a-f and 19a-f was investigated, compared to doxorubicin (IC50 = 4.17-8.87 µM) and SAHA (IC50 = 2.70-7.11 µM). Among the tested molecules, compounds 18b, 18c, 18f, 19d, and 19e displayed the highest antitumor activity against cancer cell lines (IC50 = 3.16-28.94 µM). Further, compounds 18b, 18c, 18f, and 19d were tested as Histone deacetylases (HDACs) inhibitors compared with Entinostat (IC50 = 0.093-0.75 µM). Compounds 18b, 18c, 18f, and 19d inhibited HDAC1, HDAC2, HDAC8, and HDAC6 enzymes with IC50 values ranging from 0.144 to 1.741 µM. In addition, compound 18b caused apoptosis via a mitochondrial-mediated pathway and led to cell cycle arrest at the G1 phase. It also increased caspases-3 and caspases-7 by 5.2-3.9 and 9.1-3.7 folds, respectively. The molecular docking analysis of compounds 18b and 18c revealed that they could bind to the active sites of HDAC1, HDAC2, HDAC8, and HDAC6 like co-crystallized inhibitors.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular , Relación Estructura-Actividad , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Apoptosis , Histona Desacetilasas/metabolismo , Ensayos de Selección de Medicamentos Antitumorales
10.
PLoS One ; 17(9): e0272065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36094927

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) has high therapeutic value as biomolecular target for research and development of small molecules with antineoplastic activity, since it is upregulated in many cancers, especially in ovarian and BRCA 1/2 mutated breast cancers. Decades of investigation of PARP inhibitors (PARPi) have led to the approval of several drug compounds, however clinical application of PARPi in cancer therapy is limited due to a number of factors, including low selectivity, weak affinity and undesired side effects. Thus, identification of novel drug-like chemical compounds with alternatives to the known PARPi chemical scaffolds, binding modes and interaction patterns with amino acid residues in the active site is of high therapeutic importance. In this study we applied a combination of ligand- and structure-based virtual screening approaches with the goal of identification of novel potential PARPi.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Ligandos , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Investigación
11.
Bioorg Chem ; 124: 105809, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35447406

RESUMEN

Substituted aldehydes, ethyl 2-(2-amino-thiazol-4-yl)acetate), and 2-mercaptoacetic acid, in a three-component one-pot green synthetic approach afforded 2-arylthiazolidin-4-one- thiazole hybrids(T1-T13). Compounds showed good anti-tubercular activity towards sensitive M. tuberculosis strain. Compound T8 was as potent as isoniazide (INH) with MIC = 0.12 µg/ml. Compounds T2 and T13 showed potent activity with MIC = 0.48 µg/ml. Other compounds showed moderate to good anti-tubercular activity towards MDR M. tuberculosis strain with MIC range 1.95-125 µg/ml. Compounds T2, T8, T9, and T13 showed anti-tubercular activity towards XDR M. tuberculosis strain with MIC range 7.81-125 µg/ml. Compounds T2 and T8 were capable of inhibiting M. tuberculosis InhA enzyme in-vitro with IC50 = 1.3 ± 0.61 µM and 1.06 ± 0.97 µM, respectively. Molecular docking simulation showed that T2 and T8 were also capable of interacting at the catalytic site of InhA enzyme in a similar mode to the native ligand through binding with NAD+ and Tyr158. The 3D- QSAR study highlighted the relevance of substitution of phenyl group at position-2 of thiazolidin-4-one where bulky electronegative substitution at position-4 of the phenyl ring favored the activity against M. tuberculosis H37R. Additionally, compounds showed good antibacterial activity against bronchitis causing bacteria M. pneumoniae, S. pneumonia, K. pneumonia, and B. pertussis compared to Azithromycin. In-silico studies of ADMET descriptors and drug-likeness were conducted for all synthesized compounds. Compounds showed good oral bioavailability, good gastrointestinal absorption and showed no signs of adverse effects to the liver or CNS. Compounds showed no potential carcinogenicity as well.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Bordetella pertussis , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycoplasma pneumoniae , Relación Estructura-Actividad , Tiazoles/farmacología
12.
Bioorg Chem ; 122: 105710, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35278776

RESUMEN

The antitumor activity of newly synthesized 4-anilino-2-vinylquinazolines 8a-r was measured comparable to sorafenib as a standard drug. The 2-vinylquinazolines 8a-r were evaluated for their in vitro antitumor activity. The most active antitumor agents were subjected to in vitro VEGFR-2 inhibition and apoptotic inducing assay. Compounds 8 h, 8 l, and 8r showed potential antitumor activities with IC50 values of 4.92-14.37 µM relative to the reference drug, sorafenib (IC50 values of 5.47-9.18 µM). Compound 8 h possessed potential VEGFR-2 inhibitory activity (IC50 = 60.27 nM) compared to standard drug sorafenib (IC50 = 55.43 nM), whereas compound 8 l showed moderate inhibitory activity (IC50 = 93.50 nM). The most active compound, 8 h, exhibited total apoptosis with 36.24% on MCF-7 cells, more than the apoptotic effect provoked by sorafenib (32.46%) and the cell cycle arrested at a G1/S phase. Compound 8 h, a potent VEGFR-2 inhibitor, was docked into the VEGFR-2 binding pocket, where this compound showed binding interaction similar to co-crystallized inhibitor sorafenib.


Asunto(s)
Antineoplásicos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Antineoplásicos/química , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas , Quinazolinas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...