Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 424-450, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003060

RESUMEN

The electrokinetic (EK) process has been proposed for soil decontamination from heavy metals and organic matter. The advantages of the EK process include the low operating energy, suitability for fine-grained soil decontamination, and no need for excavation. During the last three decades, enhanced and hybrid EK systems were developed and tested for improving the efficiency of contaminants removal from soils. Chemically enhanced-EK processes exhibited excellent efficiency in removing contaminants by controlling the soil pH or the chemical reaction of contaminants. EK hybrid systems were tested to overcome environmental hurdles or technical drawbacks of decontamination technologies. Hybridization of the EK process with phytoremediation, bioremediation, or reactive filter media (RFM) improved the remediation process performance by capturing contaminants or facilitating biological agents' movement in the soil. Also, EK process coupling with solar energy was proposed to treat off-grid contaminated soils or reduce the EK energy requirements. This study reviews recent advancements in the enhancement and hybrid EK systems for soil remediation and the type of contaminants targeted by the process. The study also covered the impact of operating parameters, imperfect pollution separation, and differences in the physicochemical characteristics and microstructure of soil/sediment on the EK performance. Finally, a comparison between various remediation processes was presented to highlight the pros and cons of these technologies.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/química , Restauración y Remediación Ambiental/métodos , Suelo/química , Biodegradación Ambiental
2.
Sci Total Environ ; 930: 172516, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38636874

RESUMEN

The electrokinetic process has been proposed for in-situ soil remediation to minimize excavation work and exposure to hazardous materials. The precipitation of heavy metals in alkaline pH near the cathode is still challenging. Reactive filter media and enhancement agents have been used in electrokinetics to enhance the removal of heavy metals. This study investigated coupling industrial iron slag waste and iron slag-activated carbon reactive filter media with electrokinetic for a single and mixture of heavy metals treatment. Instead of using acid enhancement agents, the anolyte solution was recycled to neutralize the alkaline front at the cathode, reducing the operation cost and chemical use. Experiments were conducted for 2 and 3 weeks at 20 mA electric current. Copper removal increased from 3.11 % to 23 % when iron slag reactive filter media was coupled with electrokinetic. Copper removal increased to 70.14 % in the electrokinetic experiment with iron slag-activated carbon reactive filter media. The copper removal increased to 89.21 % when the anolyte solution was recycled to the cathode compartment. Copper removal reached 93.45 % when the reactive filter media-electrokinetic process with anolyte recirculation was extended to 3 weeks. The reactive filter media- an electrokinetic process with anolyte recycling was evaluated for removing copper, nickel, and zinc mixture, and results revealed 81.1 % copper removal, 89.04 % nickel removal, and 92.31 % zinc removal in a 3-week experiment. The greater nickel and zinc removal is attributed to their higher solubility than copper. The results demonstrated the cost-effectiveness and efficiency of the electrokinetic with iron slag-activated carbon reactive filter media with anolyte recirculation for soil remediation from heavy metals.

3.
J Hazard Mater ; 460: 132360, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657326

RESUMEN

The efficacy of the Standalone Electrokinetic (EK) process in soil PFAS removal is negligible, primarily due to the intersecting mechanisms of electromigration and electroosmosis transportation. Consequently, the redistribution of PFAS across the soil matrix occurs, hampering effective remediation efforts. Permeable reactive barrier (PRB) has been used to capture contaminants and extract them at the end of the EK process. This study conducted laboratory-scale tests to evaluate the feasibility of the iron slag PRB enhanced-EK process in conjunction with Sodium Cholate (NaC) biosurfactant as a cost-effective and sustainable method for removing PFOA from the soil. A 2 cm iron slag-based PRB with a pH of 9.5, obtained from the steel-making industry, was strategically embedded in the middle of the EK reactors to capture PFOA within the soil. The main component of the slag, iron oxide, exhibited significant adsorption capacity for PFOA contamination. The laboratory-scale tests were conducted over two weeks, revealing a PFOA removal rate of more than 79% in the slag/activated carbon PRB-EK test with NaC enhancement and 70% PFOA removal in the slag/activated carbon PRB-EK without NaC. By extending the duration of the slag/AC PRB-EK test with NaC enhancement to three weeks, the PFOA removal rate increased to 94.09%, with the slag/AC PRB capturing over 87% of the initial PFOA concentration of 10 mg/L. The specific energy required for soil decontamination by the EK process was determined to be 0.15 kWh/kg. The outcomes of this study confirm the feasibility of utilizing iron slag waste in the EK process to capture PFOA contaminants, offering a sustainable approach to soil decontamination. Combining iron slag PRB and NaC biosurfactant provides a cost-effective and environmentally friendly method for efficient PFOA removal from soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA