Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-14, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38149868

RESUMEN

Fanconi anemia (FA) is a genetic disorder that occurs when certain genes responsible for repairing DNA replication and promoting homologous recombination fail to function properly. This leads to severe clinical symptoms and a wide range of cancer-related characteristics. Recent treatment approaches for FA involve hematopoietic stem cell transplantation (HSCT), which helps restore the population of stem cells. A survival study using p-values indicated that specific hub genes play a significant role in diagnosing and predicting the disease. To find potential medications that interact with the identified hub genes, researchers inferred drugs. Among hub genes, TP53 was found to be particularly promising through computational analysis. Further investigation focused on two drugs, Topiramate and Tocofersolan predicted based on drug bank database analysis. Molecular docking strategies were employed to assess the best binding pose of these drugs with TP53. Topiramate showed a binding affinity of -6.5 kcal/mol, while Tocofersolan showed -8.5 kcal/mol against the active residues within the binding pocket. Molecular dynamics (MD) simulations were conducted to observe the stability of each drug's interaction with the TP53 protein over time. Both drugs exhibited stable confirmation with only slight changes in the loop region of the TP53 protein during the simulation intervals. Results also shows that there was a high fluctuation observed during apo-sate simulation time intervals as compared to complex system. Hence, it is suggested that the exploration of structure-based drug design holds promising results to specific target. This could potentially lead to a breakthrough in future experimental approaches for FA treatment.Communicated by Ramaswamy H. Sarma.

2.
Biomed Res Int ; 2023: 3882081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098889

RESUMEN

Phosphatidylinositol 3,4,5-trisphosphate- (PIP3-) dependent Rac exchanger 1 (P-Rex1) functions as Rho guanine nucleotide exchange factor and is activated by synergistic activity of Gßγ and PIP3 of the heterotrimeric G protein. P-Rex1 activates Rac GTPases for regulating cell invasion and migration and promotes metastasis in several human cancers including breast, prostate, and skin cancer. The protein is a promising therapeutic target because of its multifunction roles in human cancers. Herein, the present study attempts to identify selective P-Rex1 natural inhibitors by targeting PIP3-binding pocket using large-size multiple natural molecule libraries. Each library was filtered subsequently in FAF-Drugs4 based on Lipinski's rule of five (RO5), toxicity, and filter pan assay interference compounds (PAINS). The output hits were virtually screened at the PIP3-binding pocket through PyRx AutoDock Vina and cross-checked by GOLD. The best binders at the PIP3-binding pocket were prioritized using a comparative analysis of the docking scores. Top-ranked two compounds with high GOLD fitness score (>80) and lowest AutoDock binding energy (< -12.7 kcal/mol) were complexed and deciphered for molecular dynamics along with control-P-Rex1 complex to validate compound binding conformation and disclosed binding interaction pattern. Both the systems were seen in good equilibrium, and along the simulation time, the compounds are in strong contact with the P-Rex1 PIP3-binding site. Hydrogen bonding analysis towards simulation end identified the formation of 16 and 22 short- and long-distance hydrogen bonds with different percent of occupancy to the PIP3 residues for compound I and compound 2, respectively. Radial distribution function (RDF) analysis of the key hydrogen bonds between the compound and the PIP3 residues demonstrated a strong affinity of the compounds to the mentioned PIP3 pocket. Additionally, MMGB/PBSA energies were performed that confirmed the dominance of Van der Waals energy in complex formation along with favorable contribution from hydrogen bonding. These findings were also cross-validated by a more robust WaterSwap binding energy predictor, and the results are in good agreement with a strong binding affinity of the compounds for the protein. Lastly, the key contribution of residues in interaction with the compounds was understood by binding free energy decomposition and alanine scanning methods. In short, the results of this study suggest that P-Rex1 is a good druggable target to suppress cancer metastasis; therefore, the screened druglike molecules of this study need in vitro and in vivo anti-P-Rex1 validation and may serve as potent leads to fight cancer.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias , Masculino , Humanos
3.
J Biomol Struct Dyn ; 41(20): 10859-10868, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36533379

RESUMEN

In 2022, the ongoing multi-country outbreak of monkeypox virus-now occurring outside Africa, too is a global health concern. Monkeypox is a zoonotic virus, which causes disease mainly in animals, and then it is transferred to humans. Recently, in the monkeypox epidemic, a large number of human cases emerged while the global health community worked to tackle the outbreak and save lives. Herein, a multi-epitope-based vaccine is designed against monkeypox virus using two surface-associated proteins: MPXVgp002 accession number > YP_010377003.1 and MPXVgp008 accession number > YP_010377007.1 proteins. These proteins were utilized for B- and T-cell epitopes prediction. The epitopes were further screened, and the screen filtered KCKDNEYRSR, RSCNTTHNR, and RTRRETGAS with the antigenicity scores of 0.5279, 0.5604, and 0.7628, respectively. Overall, the epitopes can induce immunity in 99.74% population of the world. Further, GPGPG linkers were used for joining the epitopes and EAAAK linker was used for adjuvant attachment. It has a three-dimensional structure modelled for retaining the structural stability. Three pairs of amino acid residues that were able to make disulfide bonds were chosen: Gly1-Ser82, Cys7-Tyr10, and Phe51-Ile55. Molecular docking of vaccine was done with toll-like receptors, viz., 2, 3, 4, and 8 immune cell receptors. The docking results revealed that the vaccine as potential molecule due to its better binding affinity with toll-like receptors 2, 3, 4 and 8. Top complex in docking in with each receptor was selected based on lowest energy scores- -888.7 kcal/mol (TLR-2), -976.3 kcal/mol (TLR-3), -801.9 kcal/mol (TLR-4), and -955.4 kcal/mol (TLR-4)-were subjected to simulation. The docked complexes were evaluated in 500 ns of MD simulation. Throughout the simulation time, no significant deviation occurred. This confirmed that the vaccine as potential vaccine candidate to interact with immune cell receptors. This interaction is important for the immune system activation. In conclusion, the proposed vaccine construct against monkeypox could induce an effective immune response and speed up the vaccine development process. However, the study is completely based on the computational approach, hence, the experimental validation is required.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Mpox , Vacunas , Animales , Humanos , Monkeypox virus , Proteínas de la Membrana , Simulación del Acoplamiento Molecular , Receptor Toll-Like 4 , Epítopos de Linfocito T , Epítopos de Linfocito B , Vacunas de Subunidad , Biología Computacional
4.
J Biomol Struct Dyn ; 41(19): 9356-9365, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36326467

RESUMEN

Cancer accounts for more than 10 million deaths in the year 2020. Development of drugs that specifically target cancer signaling pathways and proteins attain significant importance in the recent past. The p21-activated kinase 4 enzyme, which plays diverse functions in cancer and is reported in elevated expression makes this enzyme an attractive anti-cancer drug target. Similarly, cancer cells' DNA could also serve as a good platform for anti-cancer drug development. Herein, a robust in silico framework is designed to virtually screen multiple drug libraries from diverse sources to identify potential binders of the mentioned cancer targets. The virtual screening process identified three compounds (BAS_01059603, ASN_10027856, and ASN_06916672) as best docked molecules with a binding energy score of ≤ -10 kcal/mol for p21-activated kinase 4 and ≤ -6 kcal/mol for D(CGATCG). In the docking analysis, the filtered compounds revealed stable binding to the same site to which controls bind in X-ray structures. The binding interactions of the compounds with receptors are dominated by van der Waals interactions. The average root mean square deviation (rmsd) value for p21-activated kinase 4 systems is noticed at ∼2 Å, while for D(CGATCG), the average rmsd is 2.7 Å. The MMGB/PBSA interpreted ASN_12674021 to show strong intermolecular binding energy compared to the other two systems and control in both receptors. Moreover, the entropy energy contribution is less than the mean binding energy. In short, the compounds are showing promising binding to the biomolecules and therefore must be evaluated for anti-cancer activity in experimental studies.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Quinasas p21 Activadas , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Desarrollo de Medicamentos , Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
5.
Vaccines (Basel) ; 10(11)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36366394

RESUMEN

The swift emergence of antibiotic resistance (AR) in bacterial pathogens to make themselves adaptable to changing environments has become an alarming health issue. To prevent AR infection, many ways can be accomplished such as by decreasing the misuse of antibiotics in human and animal medicine. Among these AR bacterial species, Plesiomonas shigelloides is one of the etiological agents of intestinal infection in humans. It is a gram-negative rod-shaped bacterium that is highly resistant to several classes of antibiotics, and no licensed vaccine against the aforementioned pathogen is available. Hence, substantial efforts are required to screen protective antigens from the pathogen whole genome that can be subjected easily to experimental evaluations. Here, we employed a reverse vaccinology (RV) approach to design a multi-antigenic epitopes based vaccine against P. shigelloides. The complete genomes of P. shigelloides were retrieved from the National Center for Biotechnological Information (NCBI) that on average consist of 5226 proteins. The complete proteomes were subjected to different subtractive proteomics filters, and in the results of that analysis, out of total proteins, 2399 were revealed as non-redundant and 2827 as redundant proteins. The non-redundant proteins were further checked for subcellular localization analysis, in which three were localized in the extracellular matrix, eight were outer membrane, and 13 were found in the periplasmic membrane. All surface localized proteins were found to be virulent. Out of a total of 24 virulent proteins, three proteins (flagellar hook protein (FlgE), hypothetical protein, and TonB-dependent hemoglobin/transferrin/lactoferrin family receptor protein) were considered as potential vaccine targets and subjected to epitopes prediction. The predicted epitopes were further examined for antigenicity, toxicity, and solubility. A total of 10 epitopes were selected (GFKESRAEF, VQVPTEAGQ, KINENGVVV, ENKALSQET, QGYASANDE, RLNPTDSRW, TLDYRLNPT, RVTKKQSDK, GEREGKNRP, RDKKTNQPL). The selected epitopes were linked with each other via specific GPGPG linkers in order to design a multi-epitopes vaccine construct, and linked with cholera toxin B subunit adjuvant to make the designed vaccine construct more efficient in terms of antigenicity. The 3D structure of the vaccine construct was modeled ab initio as no appropriate template was available. Furthermore, molecular docking was carried out to check the interaction affinity of the designed vaccine with major histocompatibility complex (MHC-)I (PDB ID: 1L1Y), MHC-II (1KG0), and toll-like receptor 4 ((TLR-4) (PDB: 4G8A). Molecular dynamic simulation was applied to evaluate the dynamic behavior of vaccine-receptor complexes. Lastly, the binding free energies of the vaccine with receptors were estimated by using MMPB/GBSA methods. All of the aforementioned analyses concluded that the designed vaccine molecule as a good candidate to be used in experimental studies to disclose its immune protective efficacy in animal models.

6.
Vaccines (Basel) ; 10(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298444

RESUMEN

The emergence of antibiotic resistance in bacterial species is a major threat to public health and has resulted in high mortality as well as high health care costs. Burkholderia mallei is one of the etiological agents of health care-associated infections. As no licensed vaccine is available against the pathogen herein, using reverse vaccinology, bioinformatics, and immunoinformatics approaches, a multi-epitope-based vaccine against B. mallei was designed. In completely sequenced proteomes of B. mallei, 18,405 core, 3671 non-redundant, and 14,734 redundant proteins were predicted. Among the 3671 non-redundant proteins, 3 proteins were predicted in the extracellular matrix, 11 were predicted as outer membrane proteins, and 11 proteins were predicted in the periplasmic membrane. Only two proteins, type VI secretion system tube protein (Hcp) and type IV pilus secretin proteins, were selected for epitope prediction. Six epitopes, EAMPERMPAA, RSSPPAAGA, DNRPISINL, RQRFDAHAR, AERERQRFDA, and HARAAQLEPL, were shortlisted for multi-epitopes vaccine design. The predicted epitopes were linked to each other via a specific GPGPG linker and the epitopes peptide was then linked to an adjuvant molecule through an EAAAK linker to make the designed vaccine more immunologically potent. The designed vaccine was also found to have favorable physicochemical properties with a low molecular weight and fewer transmembrane helices. Molecular docking studies revealed vaccine construct stable binding with MHC-I, MHC-II, and TLR-4 with energy scores of -944.1 kcal/mol, -975.5 kcal/mol, and -1067.3 kcal/mol, respectively. Molecular dynamic simulation assay noticed stable dynamics of the docked vaccine-receptors complexes and no drastic changes were observed. Binding free energies estimation revealed a net value of -283.74 kcal/mol for the vaccine-MHC-I complex, -296.88 kcal/mol for the vaccine-MHC-II complex, and -586.38 kcal/mol for the vaccine-TLR-4 complex. These findings validate that the designed vaccine construct showed promising ability in terms of binding to immune receptors and may be capable of eliciting strong immune responses once administered to the host. Further evidence from experimentations in mice models is required to validate real immune protection of the designed vaccine construct against B. mallei.

7.
Vaccines (Basel) ; 10(10)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36298594

RESUMEN

Staphylococcus hominis is a Gram-positive bacterium from the staphylococcus genus; it is also a member of coagulase-negative staphylococci because of its opportunistic nature and ability to cause life-threatening bloodstream infections in immunocompromised patients. Gram-positive and opportunistic bacteria have become a major concern for the medical community. It has also drawn the attention of scientists due to the evaluation of immune evasion tactics and the development of multidrug-resistant strains. This prompted the need to explore novel therapeutic approaches as an alternative to antibiotics. The current study aimed to develop a broad-spectrum, multi-epitope vaccine to control bacterial infections and reduce the burden on healthcare systems. A computational framework was designed to filter the immunogenic potent vaccine candidate. This framework consists of pan-genomics, subtractive proteomics, and immunoinformatics approaches to prioritize vaccine candidates. A total of 12,285 core proteins were obtained using a pan-genome analysis of all strains. The screening of the core proteins resulted in the selection of only two proteins for the next epitope prediction phase. Eleven B-cell derived T-cell epitopes were selected that met the criteria of different immunoinformatics approaches such as allergenicity, antigenicity, immunogenicity, and toxicity. A vaccine construct was formulated using EAAAK and GPGPG linkers and a cholera toxin B subunit. This formulated vaccine construct was further used for downward analysis. The vaccine was loop refined and improved for structure stability through disulfide engineering. For an efficient expression, the codons were optimized as per the usage pattern of the E coli (K12) expression system. The top three refined docked complexes of the vaccine that docked with the MHC-I, MHC-II, and TLR-4 receptors were selected, which proved the best binding potential of the vaccine with immune receptors; this was followed by molecular dynamic simulations. The results indicate the best intermolecular bonding between immune receptors and vaccine epitopes and that they are exposed to the host's immune system. Finally, the binding energies were calculated to confirm the binding stability of the docked complexes. This work aimed to provide a manageable list of immunogenic and antigenic epitopes that could be used as potent vaccine candidates for experimental in vivo and in vitro studies.

8.
Comput Biol Med ; 134: 104415, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33910128

RESUMEN

Malaria is a life-threatening infectious disease with an estimated 229 million cases in the year 2019 worldwide. Plasmodium falciparum 1-deoxy-d-xylulose-5-phosphate reductoisomerase (PfDXR) is one of the key enzymes in the biosynthetic pathway of isoprenoid, (required for parasite growth and survival) and considered as an attractive target for designing anti-malarial drugs. Fosmidomycin is an effective DXR inhibitor and has been proven effective and safe against P. falciparum in clinical trials. However, due to low bioavailability and inappropriate drug attributes, it is not a preferred option. The present study was performed to identify PfDXR inhibitors with improved pharmacology/safety. For this purpose, an integrated computational framework, comprising of pharmacophore modeling, virtual screening, molecular docking, molecular dynamics (MD) simulation and MM/PBSA, was used. The binding free energy analysis was performed using a focused library of phytochemicals established from medicinal plants. The study identified four bioactive compounds namely, Myricetin 3-rhamnoside, 7-O-Galloyltricetiflavan, (25S)-5-beta-spirostan-3-beta-ol 3-O-beta-d-glucopyranosyl-(1->2)-beta-d-glucopyranoside, and Oleanolic acid 28-O-beta-d-glucopyranoside as potential inhibitors of PfDXR. The selection of these four compounds was based on pharmacophore mapping, docking score, binding stability, molecular interactions with the residues of PfDXR active site, binding stability and free energy estimation. In conclusion, medicinal plant-based scaffolds were predicted with enhanced efficacy and adequate physiochemical/pharmacokinetic profile that might be helpful in controlling malaria.


Asunto(s)
Isomerasas Aldosa-Cetosa , Antimaláricos , Productos Biológicos , Malaria Falciparum , Antimaláricos/farmacología , Inhibidores Enzimáticos , Humanos , Malaria Falciparum/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Plasmodium falciparum
9.
Molecules ; 26(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525411

RESUMEN

SARS-CoV-2 caused the current COVID-19 pandemic and there is an urgent need to explore effective therapeutics that can inhibit enzymes that are imperative in virus reproduction. To this end, we computationally investigated the MPD3 phytochemical database along with the pool of reported natural antiviral compounds with potential to be used as anti-SARS-CoV-2. The docking results demonstrated glycyrrhizin followed by azadirachtanin, mycophenolic acid, kushenol-w and 6-azauridine, as potential candidates. Glycyrrhizin depicted very stable binding mode to the active pocket of the Mpro (binding energy, -8.7 kcal/mol), PLpro (binding energy, -7.9 kcal/mol), and Nucleocapsid (binding energy, -7.9 kcal/mol) enzymes. This compound showed binding with several key residues that are critical to natural substrate binding and functionality to all the receptors. To test docking prediction, the compound with each receptor was subjected to molecular dynamics simulation to characterize the molecule stability and decipher its possible mechanism of binding. Each complex concludes that the receptor dynamics are stable (Mpro (mean RMSD, 0.93 Å), PLpro (mean RMSD, 0.96 Å), and Nucleocapsid (mean RMSD, 3.48 Å)). Moreover, binding free energy analyses such as MMGB/PBSA and WaterSwap were run over selected trajectory snapshots to affirm intermolecular affinity in the complexes. Glycyrrhizin was rescored to form strong affinity complexes with the virus enzymes: Mpro (MMGBSA, -24.42 kcal/mol and MMPBSA, -10.80 kcal/mol), PLpro (MMGBSA, -48.69 kcal/mol and MMPBSA, -38.17 kcal/mol) and Nucleocapsid (MMGBSA, -30.05 kcal/mol and MMPBSA, -25.95 kcal/mol), were dominated mainly by vigorous van der Waals energy. Further affirmation was achieved by WaterSwap absolute binding free energy that concluded all the complexes in good equilibrium and stability (Mpro (mean, -22.44 kcal/mol), PLpro (mean, -25.46 kcal/mol), and Nucleocapsid (mean, -23.30 kcal/mol)). These promising findings substantially advance our understanding of how natural compounds could be shaped to counter SARS-CoV-2 infection.


Asunto(s)
Antivirales/química , Bases de Datos de Compuestos Químicos , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/química , SARS-CoV-2/química , Proteínas Virales/química , Antivirales/uso terapéutico , COVID-19/epidemiología , Humanos , Pandemias , Fitoquímicos/uso terapéutico , SARS-CoV-2/metabolismo , Proteínas Virales/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19
10.
J Mol Liq ; 320: 114493, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33041407

RESUMEN

The spike protein receptor binding domain (S-RBD) is a necessary corona-viral protein for binding and entry of coronaviruses (COVs) into the host cells. Hence, it has emerged as an attractive antiviral drug target. Therefore, present study was aimed to target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S-RBD with novel bioactive compounds to retrieve potential candidates that could serve as anti-coronavirus disease 2019 (COVID-19) drugs. In this paper, computational approaches were employed, especially the structure-based virtual screening followed by molecular dynamics (MD) simulation as well as binding energy analysis for the computational identification of specific terpenes from the medicinal plants, which can block SARS-CoV-2 S-RBD binding to Human angiotensin-converting enzyme 2 (H-ACE2) and can act as potent anti-COVID-19 drugs after further advancements. The screening of focused terpenes inhibitors database composed of ~1000 compounds with reported therapeutic potential resulted in the identification of three candidate compounds, NPACT01552, NPACT01557 and NPACT00631. These three compounds established conserved interactions, which were further explored through all-atom MD simulations, free energy calculations, and a residual energy contribution estimated by MM-PB(GB)SA method. All these compounds showed stable conformation and interacted well with the hot-spot residues of SARS-CoV-2 S-RBD. Conclusively, the reported SARS-CoV-2 S-RBD specific terpenes could serve as seeds for developing potent anti-COVID-19 drugs. Importantly, the experimentally tested glycyrrhizin (NPACT00631) against SARS-CoV could be used further in the fast-track drug development process to help curb COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...