Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnol Sci Appl ; 17: 189-210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39346127

RESUMEN

Purpose: Breast cancer is a significant global health issue, contributing to 15% of cancer-related deaths. Our laboratory has pioneered a novel approach, combining Ayurvedic principles with green nanotechnology, to develop a scientifically rigorous medical modality referred to as Nano-Ayurvedic Medicine, recently approved by the US Patents and Trademarks Office. Here in we report a new Nano-Ayurvedic medicine agent derived from gold nanoparticles encapsulated with phytochemicals from Ginkgo biloba plant (GB-AuNPs). Methods: We have developed biocompatible gold nanoparticles using electron-rich phytochemicals from Ginkgo biloba as reducing agent cocktail. Ginkgo biloba phytochemical-encapsulated gold nanoparticles (GB-AuNPs) were fully characterized, and their anticancer activity, including immunomodulatory profiles, were evaluated against breast (MDAMB-231) cancer cell lines. Results: Characterization revealed spherical morphology for GB-AuNPs and possessed optimum in vitro stability through high zeta potential of -34 mV for optimum in vivo stability. The core size of GB-AuNPs of 19 nm allows for penetration into tumor cells through both EPR effects as well as through the receptor-mediated endocytosis. The Antitumor efficacy of this nano-ayurvedic medicine agent revealed strong antitumor effects of GB-AuNPs towards MDAMB-231. Our investigations reveal that GB-AuNPs enhance anti-tumor cytokines (IL-12, TNF-α, IFN-γ) and reduce pro-tumor cytokines (IL-10, IL-6), promoting the conversion of protumor M2 macrophages into M1-like macrophage antitumor phenotype. Cellular studies show that GB-AuNPs offer superior anti-tumor efficacy and a better safety profile against breast tumors compared to cisplatin. Conclusion: Our investigations have demonstrated that the nano-ayurvedic medicine agent, GB-AuNPs, treats cancers through an immunomodulatory mechanism facilitated by elevated levels of anti-tumor cytokines (TNF-α, IFN-γ and IL-12) with concomitant downregulation of pro-tumor cytokines expression (IL-6 and IL-10). The green nanotechnology approach for the development of nano-ayurvedic medicine agent (GB-AuNPs), as described in this paper, presents new and attractive opportunities for treating human cancers and other debilitating diseases and disorders.

2.
Heliyon ; 10(10): e31266, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38807873

RESUMEN

Warfarin, a widely prescribed anticoagulant, is highly effective for various coagulation disorders. However, its efficacy is limited by a narrow therapeutic index and frequent drug interactions, especially those involving metabolism by Cytochrome P450 (CYP450) enzymes. Piperine, found in black and long pepper, possesses blood-thinning properties and has been observed to inhibit CYP3A and CYP2C enzymes linked to warfarin metabolism. This study investigated the effect of piperine on warfarin metabolism in liver microsomes using a rapid and sensitive HPLC-Fluorescence method. The use of PFP (pentafluorophenyl) column with core shell particles provided the selectivity and resolution to resolve warfarin and its 4-, 6-, 7-, and 10-hydroxy metabolites in addition to the internal standard naproxen in less than 3 min. This is the fastest analytical assay for warfarin and its major metabolites reported to date, making it ideal for metabolic studies. The applicability of the method was demonstrated by monitoring the metabolism of S-warfarin in human and rat liver microsomes, and evaluating the inhibitory effect of piperine on metabolite formation. The results showed that piperine inhibited the formation of the major metabolite, 7-hydroxywarfarin, with half-maximal inhibitory concentration (IC50) 14.2 µM and 3.2 µM in human and rat liver microsomes, respectively. Furthermore, coagulation studies in vitro using rat plasma showed that piperine does not affect prothrombin time (PT) and activated partial thromboplastin time (aPTT). This study suggested that piperine may present a potential drug interaction with warfarin at the metabolism level, but has no direct effect on the activation of the extrinsic or intrinsic coagulation cascades. Further clinical investigation is therefore required, as piperine may increase the bioavailability of warfarin, thus increasing risk of serious adverse events in patients.

3.
Drug Deliv Transl Res ; 13(6): 1699-1715, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36587110

RESUMEN

Peptides have a distinguished therapeutic potential for several chronic conditions, and more than 80 peptides exist in the global market. However, most of these marketed peptide drugs are currently delivered intravenously or subcutaneously due to their fast degradation and limited absorption through non-invasive routes. The pulmonary route is favored as a non-invasive route. Neonatal Fc receptor (FcRn) is expressed in adult human lungs and has a role in enhancing the pulmonary absorption of monoclonal antibodies. In this work, we developed and characterized candidate protein delivery systems for the pulmonary administration of peptides. The prepared bare and loaded zein nanoparticles (ZNPs), targeted, physically, and covalently PEGylated ZNPs showed hydrodynamic diameters between 137 and 155 nm and a narrow distribution index. Insulin, which was used as a protein model, showed an association efficiency of 72%, while the FcRn-targeted peptide conjugation efficiency was approximately 68%. The physically adsorbed poloxamer 407 on insulin-loaded ZNPs showed slower and controlled insulin release. The in vitro cell culture model consists of the NCI-H441 epithelial cell line, which confirmed its expression of the targeted receptor, FcRn. The safety of ZNPs was verified after incubation with both cell lines of the in vitro pulmonary model, namely NCI-H441 and HPMEC-ST1.6R, for 24 h. It was observed that targeted ZNPs enhanced insulin permeability by showing a higher apparent permeation coefficient than non-targeted ZNPs. Overall, both targeted PEGylated ZNPs showed to be suitable peptide carriers and adequately fit the demands of delivery systems designed for pulmonary administration.


Asunto(s)
Nanopartículas , Zeína , Recién Nacido , Humanos , Zeína/química , Péptidos , Preparaciones Farmacéuticas , Insulina , Pulmón , Nanopartículas/química , Polietilenglicoles
4.
Eur J Pharm Sci ; 176: 106259, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35842140

RESUMEN

Colorectal cancer (CRC) is the second type of cancer with the highest lethality rate. The current chemotherapy to treat CRC causes systemic toxicity, unsatisfying response rate, and low tumor-specific selectivity, which is mainly administered by invasive routes. The chronic and aggressive nature of cancers may require long-term regimens. Thus, the oral route is preferred. However, the orally administered drugs still need to surpass the harsh environment of the gastrointestinal tract and the biological barriers. Nanotechnology is a promising strategy to overcome the oral route limitations. Targeted nanoparticle systems decorated with functional groups can enhance the delivery of anticancer agents to tumor sites. It is described in the literature that the neonatal Fc receptor (FcRn) is expressed in cancer tissue and overexpressed in CRC epithelial cells. However, the impact of FcRn-targeted nanosystems in the treatment of CRC has been poorly investigated. This review article discusses the current knowledge on the involvement of the FcRn in CRC, as well as to critically assess its relevance as a target for further localization of oral nanocarriers in CRC tumor cells. Finally, a brief overview of cancer therapeutics, strategies to design the nanoparticles of anticancer drugs and a review of decorated nanoparticles with FcRn moieties are explored.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Nanopartículas , Administración Oral , Neoplasias Colorrectales/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Humanos , Recién Nacido
5.
Molecules ; 27(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35335170

RESUMEN

Steroids are compounds widely available in nature and synthesized for therapeutic and medical purposes. Although several analytical techniques are available for the quantification of steroids, their analysis is challenging due to their low levels and complex matrices of the samples. The efficiency and quick separation of the HPLC combined with the sensitivity, selectivity, simplicity, and cost-efficiency of fluorescence, make HPLC coupled to fluorescence detection (HPLC-FLD) an ideal tool for routine measurement and detection of steroids. In this review, we covered HPLC-FLD methods reported in the literature for the steroids quantification in clinical, pharmaceutical, and environmental applications, focusing on the various approaches of fluorescent derivatization. The aspects related to analytical methodology including sample preparation, derivatization reagents, and chromatographic conditions will be discussed.


Asunto(s)
Colorantes , Esteroides , Cromatografía Líquida de Alta Presión/métodos , Preparaciones Farmacéuticas , Espectrometría de Fluorescencia/métodos
6.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35215259

RESUMEN

A new system composed of chitosan nanoparticles loaded with methotrexate (MTX-CS-NPs) and functionalized with photocatalytic TiO2 nanoparticles (TiO2-NPs) was prepared. This system is expected to initiate polymeric rupture of MTX-CS-NPs and subsequently release MTX, upon illumination with UV light. MTX-CS-NPs were prepared and characterized in terms of particle size, charge, polydispersity and drug release before and after coating with TiO2-NPs. The release of MTX in vitro was studied in dark, light and UV light. Finally, coated and uncoated MTX-CS-NPs were studied in vitro using MCF-7 cell line. The functionalized NPs were larger in size, more polydisperse and carried higher positive charges compared to the unfunctionalized NPs. The entrapment efficacy was high reaching 75% and was not affected by coating with MTX-CS-NPs. Further, less than 5% of methotrexate was released after 80 h from uncoated NPs and the release was not enhanced by UV illumination of the particles. In contrast, the release from functionalized NPs was enhanced, reaching 40% after 80 h, as the particles were stroked with UV light and as the amount of TiO2-NPs used in coating increased. Finally, coating the MTX-CS-NPs with TiO2-NPs significantly enhanced their cytotoxicity on MCF-7 cells. The coated MTX-CS-NPs recorded low cell viabilities compared to the other formulations. In conclusion, the drug release of MTX-CS-NPs could be triggered and controlled remotely by coating with TiO2-NPs, which maybe more effective in cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA