Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Biology (Basel) ; 12(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38132326

RESUMEN

Cerebrovascular pathology that involves altered protein levels (or signaling) of the transforming growth factor beta (TGFß) family has been associated with various forms of age-related dementias, including Alzheimer disease (AD) and vascular cognitive impairment and dementia (VCID). Transgenic mice overexpressing TGFß1 in the brain (TGF mice) recapitulate VCID-associated cerebrovascular pathology and develop cognitive deficits in old age or when submitted to comorbid cardiovascular risk factors for dementia. We characterized the cerebrovascular proteome of TGF mice using mass spectrometry (MS)-based quantitative proteomics. Cerebral arteries were surgically removed from 6-month-old-TGF and wild-type mice, and proteins were extracted and analyzed by gel-free nanoLC-MS/MS. We identified 3602 proteins in brain vessels, with 20 demonstrating significantly altered levels in TGF mice. For total and/or differentially expressed proteins (p ≤ 0.01, ≥ 2-fold change), using multiple databases, we (a) performed protein characterization, (b) demonstrated the presence of their RNA transcripts in both mouse and human cerebrovascular cells, and (c) demonstrated that several of these proteins were present in human extracellular vesicles (EVs) circulating in blood. Finally, using human plasma, we demonstrated the presence of several of these proteins in plasma and plasma EVs. Dysregulated proteins point to perturbed brain vessel vasomotricity, remodeling, and inflammation. Given that blood-isolated EVs are novel, attractive, and a minimally invasive biomarker discovery platform for age-related dementias, several proteins identified in this study can potentially serve as VCID markers in humans.

2.
Cell Death Dis ; 13(4): 325, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397630

RESUMEN

We previously showed that simvastatin (SV) restored memory in a mouse model of Alzheimer disease (AD) concomitantly with normalization in protein levels of memory-related immediate early genes in hippocampal CA1 neurons. Here, we investigated age-related changes in the hippocampal memory pathway, and whether the beneficial effects of SV could be related to enhanced neurogenesis and signaling in the Wnt/ß-catenin pathway. APP mice and wild-type (WT) littermate controls showed comparable number of proliferating (Ki67-positive nuclei) and immature (doublecortin (DCX)-positive) granule cells in the dentate gyrus until 3 months of age. At 4 months, Ki67 or DCX positive cells decreased sharply and remained less numerous until the endpoint (6 months) in both SV-treated and untreated APP mice. In 6 month-old APP mice, dendritic extensions of DCX immature neurons in the molecular layer were shorter, a deficit fully normalized by SV. Similarly, whereas mature granule cells (calbindin-immunopositive) were decreased in APP mice and not restored by SV, their dendritic arborizations were normalized to control levels by SV treatment. SV increased Prox1 protein levels (↑67.7%, p < 0.01), a Wnt/ß-catenin signaling target, while significantly decreasing (↓61.2%, p < 0.05) the upregulated levels of the ß-catenin-dependent Wnt pathway inhibitor DKK1 seen in APP mice. In APP mice, SV benefits were recapitulated by treatment with the Wnt/ß-catenin specific agonist WAY-262611, whereas they were fully abolished in mice that received the Wnt/ß-catenin pathway inhibitor XAV939 during the last month of SV treatment. Our results indicate that activation of the Wnt-ß-catenin pathway through downregulation of DKK1 underlies SV neuronal and cognitive benefits.


Asunto(s)
Enfermedad de Alzheimer , Vía de Señalización Wnt , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Antígeno Ki-67/metabolismo , Ratones , Neurogénesis/fisiología , Neuronas/metabolismo , Simvastatina/farmacología , Simvastatina/uso terapéutico , beta Catenina/metabolismo
3.
J Cereb Blood Flow Metab ; 42(1): 74-89, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34515549

RESUMEN

A vascular insult occurring early in disease onset may initiate cognitive decline leading to dementia, while pharmacological and lifestyle interventions can prevent this progression. Mice with a selective, tamoxifen-inducible deletion of NF-κB essential modulator (Nemo) in brain endothelial cells were studied as a model of vascular cognitive impairment. Groups included NemoFl controls and three NemobeKO groups: One untreated, and two treated with simvastatin or exercise. Social preference and nesting were impaired in NemobeKO mice and were not countered by treatments. Cerebrovascular function was compromised in NemobeKO groups regardless of treatment, with decreased changes in sensory-evoked cerebral blood flow and total hemoglobin levels, and impaired endothelium-dependent vasodilation. NemobeKO mice had increased string vessel pathology, blood-brain barrier disruption, neuroinflammation, and reduced cortical somatostatin-containing interneurons. These alterations were reversed when endothelial function was recovered. Findings strongly suggest that damage to the cerebral endothelium can trigger pathologies associated with dementia and its functional integrity should be an effective target in future therapeutic efforts.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Disfunción Cognitiva , Endotelio Vascular , Interneuronas/metabolismo , Vasodilatación , Animales , Velocidad del Flujo Sanguíneo , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/prevención & control , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Somatostatina/metabolismo
4.
Br J Pharmacol ; 179(10): 2259-2274, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34820829

RESUMEN

BACKGROUND AND PURPOSE: Inward rectifier potassium (KIR ) channels are key effectors of vasodilatation in neurovascular coupling (NVC). KIR channels expressed in cerebral endothelial cells (ECs) have been confirmed as essential modulators of NVC. Alzheimer's disease (AD) and cerebrovascular disease (CVD) impact on EC-KIR channel function, but whether oxidative stress or inflammation explains this impairment remains elusive. EXPERIMENTAL APPROACH: We evaluated KIR channel function in intact and EC-denuded pial arteries of wild-type (WT) and transgenic mice overexpressing a mutated form of the human amyloid precursor protein (APP mice, recapitulating amyloid ß-induced oxidative stress seen in AD) or a constitutively active form of TGF-ß1 (TGF mice, recapitulating inflammation seen in cerebrovascular pathology). The benefits of antioxidant (catalase) or anti-inflammatory (indomethacin) drugs also were investigated. Vascular and neuronal components of NVC were assessed in vivo. KEY RESULTS: Our findings show that (i) KIR channel-mediated maximal vasodilatation in APP and TGF mice reaches only 37% and 10%, respectively, of the response seen in WT mice; (ii) KIR channel dysfunction results from KIR 2.1 subunit impairment; (iii) about 50% of K+ -induced artery dilatation is mediated by EC-KIR channels; (iv) oxidative stress and inflammation impair KIR channel function, which can be restored by antioxidant and anti-inflammatory drugs; and (v) inflammation induces KIR 2.1 overexpression and impairs NVC in TGF mice. CONCLUSION AND IMPLICATIONS: Therapies targeting both oxidative stress and inflammation are necessary for full recovery of KIR 2.1 channel function in cerebrovascular pathology caused by AD and CVD.


Asunto(s)
Enfermedad de Alzheimer , Canales de Potasio de Rectificación Interna/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Animales , Arterias Cerebrales/metabolismo , Circulación Cerebrovascular , Células Endoteliales/metabolismo , Endotelio/metabolismo , Ratones , Ratones Transgénicos , Potasio/uso terapéutico
5.
Front Physiol ; 12: 715446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475828

RESUMEN

Alzheimer's disease (AD), the most common form of dementia, is characterized by neuronal degeneration and cerebrovascular dysfunction. Increasing evidence indicates that cerebrovascular dysfunction may be a key or an aggravating pathogenic factor in AD. This emphasizes the importance to investigate the tight coupling between neuronal activity and cerebral blood flow (CBF) termed neurovascular coupling (NVC). NVC depends on all cell types of the neurovascular unit within which astrocytes are important players in the progression of AD. Hence, the objective of this study was to characterize the hippocampal NVC in a mouse model of AD. Hippocampal NVC was studied in 6-month-old amyloid-beta precursor protein (APP) transgenic mice and their corresponding wild-type littermates using in vivo laser Doppler flowmetry to measure CBF in area CA1 of the hippocampus in response to Schaffer collaterals stimulation. Ex vivo two-photon microscopy experiments were performed to determine astrocytic Ca2+ and vascular responses to electrical field stimulation (EFS) or caged Ca2+ photolysis in hippocampal slices. Neuronal synaptic transmission, astrocytic endfeet Ca2+ in correlation with reactive oxygen species (ROS), and vascular reactivity in the presence or absence of Tempol, a mimetic of superoxide dismutase, were further investigated using electrophysiological, caged Ca2+ photolysis or pharmacological approaches. Whisker stimulation evoked-CBF increases and ex vivo vascular responses to EFS were impaired in APP mice compared with their age-matched controls. APP mice were also characterized by decreased basal synaptic transmission, a shorter astrocytic Ca2+ increase, and altered vascular response to elevated perivascular K+. However, long-term potentiation, astrocytic Ca2+ amplitude in response to EFS, together with vascular responses to nitric oxide remained unchanged. Importantly, we found a significantly increased Ca2+ uncaging-induced ROS production in APP mice. Tempol prevented the vascular response impairment while normalizing astrocytic Ca2+ in APP mice. These findings suggest that NVC is altered at many levels in APP mice, at least in part through oxidative stress. This points out that therapies against AD should include an antioxidative component to protect the neurovascular unit.

6.
Front Aging Neurosci ; 13: 623751, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584250

RESUMEN

The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed. Moreover, translationally relevant aspects are increasingly recognized in basic science studies, which is believed to increase their predictive value and the relevance of obtained findings for clinical application.This review reports key results from some of the most remarkable and encouraging achievements in neurovascular research that have been reported at the 10th International Symposium on Neuroprotection and Neurorepair. Basic science topics discussed herein focus on aspects such as neuroinflammation, extracellular vesicles, and the role of sex and age on stroke recovery. Translational reports highlighted endovascular techniques and targeted delivery methods, neurorehabilitation, advanced functional testing approaches for experimental studies, pre-and post-conditioning approaches as well as novel imaging and treatment strategies. Beyond ischemic stroke, particular emphasis was given on activities in the fields of traumatic brain injury and cerebral hemorrhage in which promising preclinical and clinical results have been reported. Although the number of neutral outcomes in clinical trials is still remarkably high when targeting cerebrovascular diseases, we begin to evidence stepwise but continuous progress towards novel treatment options. Advances in preclinical and translational research as reported herein are believed to have formed a solid foundation for this progress.

7.
Front Physiol ; 12: 611984, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584345

RESUMEN

Preeclampsia is a common hypertensive disorder in pregnant women and whose causes and consequences have focused primarily on cardiovascular outcomes on the mother and offspring, often without taking into consideration the possible effects on the brain. One possible cause of preeclampsia has been attributed to alterations in the renin-angiotensin system, which has also been linked to cognitive decline. In this pilot study, we use a transgenic mouse model that chronically overexpresses human angiotensinogen and renin (R+A+ mice) that displayed characteristics of preeclampsia such as proteinuria during gestation. Offspring of these mothers as well as from control mothers were also examined. We were primarily interested in detecting whether cognitive deficits were present in the mothers and offspring in the long term and used a spatial learning and memory task as well as an object recognition task at three timepoints: 3, 8, and 12 months post-partum or post-natal, while measuring blood pressure and performing urine analysis after each timepoint. While we did not find significant deficits in preeclamptic mothers at the later timepoints, we did observe negative consequences in the pups of R+A+ mice that coincided with hemodynamic alterations whereby pups had higher whisker-evoked oxygenated hemoglobin levels and increased cerebral blood flow responses compared to control pups. Our study provides validation of this preeclampsia mouse model for future studies to decipher the underlying mechanisms of long-term cognitive deficits found in offspring.

8.
Alzheimers Dement (Amst) ; 12(1): e12053, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32775596

RESUMEN

Two of the key functions of arteries in the brain are (1) the well-recognized supply of blood via the vascular lumen and (2) the emerging role for the arterial walls as routes for the elimination of interstitial fluid (ISF) and soluble metabolites, such as amyloid beta (Aß), from the brain and retina. As the brain and retina possess no conventional lymphatic vessels, fluid drainage toward peripheral lymph nodes is mediated via transport along basement membranes in the walls of capillaries and arteries that form the intramural peri-arterial drainage (IPAD) system. IPAD tends to fail as arteries age but the mechanisms underlying the failure are unclear. In some people this is reflected in the accumulation of Aß plaques in the brain in Alzheimer's disease (AD) and deposition of Aß within artery walls as cerebral amyloid angiopathy (CAA). Knowledge of the dynamics of IPAD and why it fails with age is essential for establishing diagnostic tests for the early stages of the disease and for devising therapies that promote the clearance of Aß in the prevention and treatment of AD and CAA. This editorial is intended to introduce the rationale that has led to the establishment of the Clearance of Interstitial Fluid (ISF) and CSF (CLIC) group, within the Vascular Professional Interest Area of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment.

9.
Geroscience ; 42(5): 1237-1256, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32700176

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder that is multifactorial in nature. Yet, despite being the most common form of dementia in the elderly, AD's primary cause remains unknown. As such, there is currently little to offer AD patients as the vast majority of recently tested therapies have either failed in well-controlled clinical trials or inadequately treat AD. Recently, emerging preclinical and clinical evidence has associated the brain renin angiotensin system (RAS) to AD pathology. Accordingly, various components of the brain RAS were shown to be altered in AD patients and mouse models, including the angiotensin II type 1 (AT1R), angiotensin IV receptor (AT4R), and Mas receptors. Collectively, the changes observed within the RAS have been proposed to contribute to many of the neuropathological hallmarks of AD, including the neuronal, cognitive, and vascular dysfunctions. Accumulating evidence has additionally identified antihypertensive medications targeting the RAS, particularly angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs), to delay AD onset and progression. In this review, we will discuss the emergence of the RAS's involvement in AD and highlight putative mechanisms of action underlying ARB's beneficial effects that may explain their ability to modify the risk of developing AD or AD progression. The RAS may provide novel molecular targets for recovering memory pathways, cerebrovascular function, and other pathological landmarks of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antagonistas de Receptores de Angiotensina/farmacología , Encéfalo/efectos de los fármacos , Receptores de Angiotensina , Anciano , Enfermedad de Alzheimer/prevención & control , Angiotensina II , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Humanos , Sistema Renina-Angiotensina
10.
Hypertension ; 75(6): 1464-1474, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32362228

RESUMEN

Antihypertensive medications targeting the renin-angiotensin system have lowered the incidence and progression of Alzheimer disease. Understanding how these medications function could lead to novel therapeutic strategies. AT4Rs (angiotensin IV receptors) have been associated with angiotensin receptor blockers' cognitive, cerebrovascular, and neuroinflammatory rescue in Alzheimer disease models. Yet, whether AT4Rs act alone or with AT2Rs remains unknown. Here, we investigated whether AT2Rs contribute to losartan's benefits and whether chronic AT2R activation could mimic angiotensin receptor blocker benefits in transgenic mice overexpressing familial Alzheimer disease mutations of the human APP (amyloid precursor protein). Losartan-treated mice (10 mg/kg per day, drinking water, 7 months) received intracerebroventricular (1 month) administration of vehicle or AT2R antagonist PD123319 (1.6 nmol/day). PD123319 countered losartan's benefits on spatial learning and memory, neurovascular coupling, and hampered those on oxidative stress and nitric oxide bioavailability. PD123319 did not oppose losartan's benefits on short-term memory and vasodilatory function and had no benefit on neuroinflammation or Aß (amyloid ß) pathology. Mice receiving either vehicle or selective AT2R agonist compound 21 (intracerebroventricular: 1 nmol/day, 1 month or drinking water: 10 mg/kg per day, 7 months), showed no improvement in memory, vasodilatory function, or nitric oxide bioavailability. Compound 21 treatment normalized neurovascular coupling, reduced astrogliosis independent of persisting microgliosis, and exacerbated oxidative stress in APP mice. Compound 21 reduced dense core Aß plaques, but not diffuse plaques or Aß species. Our findings suggest that targeting AT2Rs is not an ideal strategy for restoring Aß-related cognitive and cerebrovascular deficits.


Asunto(s)
Enfermedad de Alzheimer , Imidazoles/farmacología , Acoplamiento Neurovascular/efectos de los fármacos , Placa Amiloide , Piridinas/farmacología , Receptor de Angiotensina Tipo 2/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Sulfonamidas/farmacología , Tiofenos/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales , Antiinflamatorios/farmacología , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Losartán/farmacología , Ratones , Neuroinmunomodulación , Placa Amiloide/inmunología , Placa Amiloide/patología , Vasodilatación/efectos de los fármacos
11.
Glia ; 68(9): 1925-1940, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32154952

RESUMEN

White matter (WM) pathology is a clinically predictive feature of vascular cognitive impairment and dementia (VCID). Mice overexpressing transforming growth factor-ß1 (TGF) with an underlying cerebrovascular pathology when fed a high cholesterol diet (HCD) develop cognitive deficits (VCID mice) that we recently found could be prevented by physical exercise (EX). Here, we further investigated cognitive and WM pathology in VCID mice and examined the cellular substrates of the protective effects of moderate aerobic EX focusing on WM alterations. Six groups were studied: Wild-type (WT) and TGF mice (n = 20-24/group) fed standard lab chow or a 2% HCD, with two HCD-fed groups given concurrent access to running wheels. HCD had a significant negative effect in TGF mice that was prevented by EX on working and object recognition memory, the latter also altered in WT HCD mice. Whisker-evoked increases in cerebral blood flow (CBF) were reduced in HCD-fed mice, deficits that were countered by EX, and baseline WM CBF was similarly affected. VCID mice displayed WM functional deficits characterized by lower compound action potential amplitude not found in EX groups. Moreover, there was an increased number of collapsing capillaries, galectin-3-expressing microglial cells, as well as a reduced number of oligodendrocytes in the WM of VCID mice; all of which were prevented by EX. Our findings indicate that a compromised cerebral circulation precedes reduced WM vascularization, enhanced WM inflammation and impaired oligodendrogenesis that all likely account for the increased susceptibility to memory impairments in VCID mice, which can be prevented by EX. MAIN POINTS: A compromised cerebral circulation increases susceptibility to anatomical and functional white matter changes that develop alongside cognitive deficits when challenged with a high cholesterol diet; preventable by a translational regimen of exercise.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Sustancia Blanca , Animales , Colesterol , Cognición , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Ratones , Condicionamiento Físico Animal
12.
Neurobiol Dis ; 134: 104644, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31669735

RESUMEN

Angiotensin II type 1 receptor antagonists like losartan have been found to lower the incidence and progression to Alzheimer's disease (AD), as well as rescue cognitive and cerebrovascular deficits in AD mouse models. We previously found that co-administration of an angiotensin IV (AngIV) receptor (AT4R) antagonist prevented losartan's benefits, identifying AT4Rs as a possible target to counter AD pathogenesis. Therein, we investigated whether directly targeting AT4Rs could counter AD pathogenesis in a well-characterized mouse model of AD. Wild-type and human amyloid precursor protein (APP) transgenic (J20 line) mice (4.5 months old) received vehicle or AngIV (~1.3 nmol/day, 1 month) intracerebroventricularly via osmotic minipumps. AngIV restored short-term memory, spatial learning and memory in APP mice. AngIV normalized hippocampal AT4R levels, increased hippocampal subgranular zone cellular proliferation and dendritic arborization, and reduced oxidative stress. AngIV rescued whisker-evoked neurovascular coupling, endothelial- and smooth muscle cell-mediated cerebral vasodilatory responses, and cerebrovascular nitric oxide bioavailability. AngIV did not alter blood pressure, neuroinflammation or amyloid-ß (Aß) pathology. These preclinical findings identify AT4R as a promising target to counter Aß-related cognitive and cerebrovascular deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Angiotensina II/análogos & derivados , Hipocampo/efectos de los fármacos , Memoria/efectos de los fármacos , Acoplamiento Neurovascular/efectos de los fármacos , Precursor de Proteína beta-Amiloide/genética , Angiotensina II/farmacología , Animales , Modelos Animales de Enfermedad , Humanos , Infusiones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
Geroscience ; 42(1): 81-96, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31811528

RESUMEN

This third in a series of vascular cognitive impairment (VCI) workshops, supported by "The Leo and Anne Albert Charitable Trust," was held from February 8 to 12 at the Omni Resort in Carlsbad, CA. This workshop followed the information gathered from the earlier two workshops suggesting that we focus more specifically on brain white matter in age-related cognitive impairment. The Scientific Program Committee (Frank Barone, Shawn Whitehead, Eric Smith, and Rod Corriveau) assembled translational, clinical, and basic scientists with unique expertise in acute and chronic white matter injury at the intersection of cerebrovascular and neurodegenerative etiologies. As in previous Albert Trust workshops, invited participants addressed key topics related to mechanisms of white matter injury, biomarkers of white matter injury, and interventions to prevent white matter injury and age-related cognitive decline. This report provides a synopsis of the presentations and discussions by the participants, including the existing knowledge gaps and the delineation of the next steps towards advancing our understanding of white matter injury and age-related cognitive decline. Workshop discussions and consensus resulted in action by The Albert Trust to (1) increase support from biannual to annual "White Matter and Cognition" workshops; (2) provide funding for two collaborative, novel research grants annually submitted by meeting participants; and (3) coordinate the formation of the "Albert Research Institute for White Matter and Cognition." This institute will fill a gap in white matter science, providing white matter and cognition communications, including annual updates from workshops and the literature and interconnecting with other Albert Trust scientific endeavors in cognition and dementia, and providing support for newly established collaborations between seasoned investigators and to the development of talented young investigators in the VCI-dementia (VCID) and white matter cognition arena.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Sustancia Blanca , Envejecimiento , Cognición , Humanos
14.
FASEB J ; 33(12): 13280-13293, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31557051

RESUMEN

Aerobic physical exercise (EX) and controlling cardiovascular risk factors in midlife can improve and protect cognitive function in healthy individuals and are considered to be effective at reducing late-onset dementia incidence. By investigating commonalities between these preventative approaches, we sought to identify possible targets for effective interventions. We compared the efficacy of EX and simvastatin (SV) pharmacotherapy to counteract cognitive deficits induced by a high-cholesterol diet (2%, HCD) in mice overexpressing TGF-ß1 (TGF mice), a model of vascular cognitive impairment and dementia. Cognitive deficits were found in hypercholesterolemic mice for object recognition memory, and both SV and EX prevented this decline. EX improved stimulus-evoked cerebral blood flow responses and was as effective as SV in normalizing endothelium-dependent vasodilatory responses in cerebral arteries. The up-regulation of galectin-3-positive microglial cells in white matter (WM) of HCD-fed TGF mice with cognitive deficits was significantly reduced by both SV and EX concurrently with cognitive recovery. Altered hippocampal neurogenesis, gray matter astrogliosis, or microgliosis did not correlate with cognitive deficits or benefits. Overall, results indicate that SV and EX prevented cognitive decline in hypercholesterolemic mice and that they share common sites of action in preventing endothelial cell dysfunction and reducing WM inflammation.-Trigiani, L. J., Royea, J., Tong, X.-K., Hamel, E. Comparative benefits of simvastatin and exercise in a mouse model of vascular cognitive impairment and dementia.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/terapia , Demencia/tratamiento farmacológico , Demencia/terapia , Condicionamiento Físico Animal/métodos , Simvastatina/uso terapéutico , Animales , Circulación Cerebrovascular/efectos de los fármacos , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/terapia , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo
15.
Learn Mem ; 26(3): 77-83, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30770464

RESUMEN

Netrin-1 was initially characterized as an axon guidance molecule that is essential for normal embryonic neural development; however, many types of neurons continue to express netrin-1 in the postnatal and adult mammalian brain. Netrin-1 and the netrin receptor DCC are both enriched at synapses. In the adult hippocampus, activity-dependent secretion of netrin-1 by neurons potentiates glutamatergic synapse function, and is critical for long-term potentiation, an experimental cellular model of learning and memory. Here, we assessed the impact of neuronal expression of netrin-1 in the adult brain on behavior using tests of learning and memory. We show that adult mice exhibit impaired spatial memory following conditional deletion of netrin-1 from glutamatergic neurons in the hippocampus and neocortex. Further, we provide evidence that mice with conditional deletion of netrin-1 do not display aberrant anxiety-like phenotypes and show a reduction in self-grooming behavior. These findings reveal a critical role for netrin-1 expressed by neurons in the regulation of spatial memory formation.


Asunto(s)
Hipocampo/fisiología , Neocórtex/fisiología , Netrina-1/fisiología , Neuronas/fisiología , Memoria Espacial/fisiología , Animales , Conducta Animal , Femenino , Ácido Glutámico/fisiología , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neocórtex/metabolismo , Netrina-1/metabolismo , Neuronas/metabolismo
16.
Auton Neurosci ; 217: 71-79, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30744905

RESUMEN

Neuroimaging techniques, such as functional MRI, map brain activity through hemodynamic-based signals, and are invaluable diagnostic tools in several neurological disorders such as stroke and dementia. Hemodynamic signals are normally precisely related to the underlying neuronal activity through neurovascular coupling mechanisms that ensure the supply of blood, glucose and oxygen to neurons at work. The knowledge of neurovascular coupling has greatly advanced over the last 30 years, it involves multifaceted interactions between excitatory and inhibitory neurons, astrocytes, and the microvessels. While the tight relationship between blood flow and neuronal activity forms a fundamental brain function, whether neurovascular coupling mechanisms are reliable across physiological and pathological conditions has been questioned. In this review, we interrogate the relationship between blood flow and neuronal activity during activation of different brain pathways: a sensory stimulation driven by glutamate, and stimulation of neuromodulatory pathways driven by acetylcholine or noradrenaline, and we compare the underlying neurovascular coupling mechanisms. We further question if neurovascular coupling mechanisms are affected by changing brain states, as seen in behavioral conditions of sleep, wakefulness, attention and in pathological conditions. Finally, we provide a short overview of how alterations of the brain vasculature could compromise the reliability of neurovascular coupling. Overall, while neurovascular coupling requires activation of common signalling pathways, alternate unique cascades exist depending on the activated pathways. Further studies are needed to fully elucidate the alterations in neurovascular coupling across brain states and pathological conditions.


Asunto(s)
Corteza Cerebral/fisiología , Trastornos Cerebrovasculares/fisiopatología , Demencia/fisiopatología , Fenómenos Electrofisiológicos/fisiología , Acoplamiento Neurovascular/fisiología , Transducción de Señal/fisiología , Humanos
17.
Cell Death Dis ; 10(2): 89, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30692517

RESUMEN

Transgenic mice overexpressing transforming growth factor-ß1 (TGF mice) display impaired cerebrovascular reactivity, cerebral hypoperfusion and neurovascular uncoupling, but no overt cognitive deficits until old age. Cardiovascular diseases are a major risk factor for vascular cognitive impairment and dementia (VCID). We investigated the impact of a high cholesterol diet (HCD) on cerebrovascular and cognitive function in adult (6 months) and aged (12 months) TGF mice, together with the potential benefit of simvastatin (SV), an anti-cholesterol drug with pleiotropic effects, in adult mice. HCD increased blood, but not brain, cholesterol levels in treated mice, which SV did not reduce. In WT mice, HCD induced small, albeit significant, impairment in endothelium-dependent dilatory function. In TGF mice, HCD worsened the established brain vessel dilatory dysfunction in an age-dependent manner and increased the number of string vessels in the white matter (WM), alterations respectively normalized and significantly countered by SV. HCD triggered cognitive decline only in TGF mice at both ages, a deficit prevented by SV. Concurrently, HCD upregulated galectin-3 immunoreactivity in WM microglial cells, a response significantly reduced in SV-treated TGF mice. Grey matter astrogliosis and microgliosis were not affected by HCD or SV. In the subventricular zone of adult HCD-treated TGF mice, SV promoted oligogenesis and migration of oligodendrocyte progenitor cells. The results demonstrate that an underlying cerebrovascular pathology increases vulnerability to cognitive failure when combined to another risk factor for dementia, and that WM alterations are associated with this loss of function. The results further indicate that myelin repair mechanisms, as triggered by SV, may bear promise in preventing or delaying cognitive decline related to VCID.


Asunto(s)
Trastornos Cerebrovasculares/etiología , Trastornos del Conocimiento/etiología , Hipercolesterolemia/complicaciones , Hipercolesterolemia/tratamiento farmacológico , Simvastatina/uso terapéutico , Animales , Trastornos Cerebrovasculares/patología , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Hipercolesterolemia/patología , Masculino , Ratones , Ratones Transgénicos , Simvastatina/farmacología , Sustancia Blanca/patología
18.
Hypertension ; 72(5): 1217-1226, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30354809

RESUMEN

The angiotensin receptor blocker losartan mitigated cerebrovascular and cognitive deficits in mouse models of Alzheimer disease, in line with some clinical evidence of reduced onset and progression to Alzheimer disease. We investigated whether these benefits apply to another angiotensin receptor blocker, namely candesartan. Adult transgenic mice overexpressing a mutated form of the human APP (amyloid precursor protein) and wild-type controls were treated with vehicle or candesartan (cohort 1: 2 months, 1 mg/kg per day, osmotic subcutaneous minipumps; cohort 2: 5 months, 10 mg/kg per day in drinking water). Candesartan largely restored endothelial and smooth muscle function and reduced neuroinflammation in both cohorts, without improving sensory evoked cerebral blood flow responses. Candesartan exerted restorative effects on the reduced number of Ki67-immunopositive proliferating cells in the granule cell layer of the hippocampus but not on that of DCX (doublecortin)-positive immature granule cells, despite normalizing the length of their dendritic projections in the molecular layer. Amyloid plaque load and impaired cognitive function were unaltered by candesartan, and blood pressure was decreased in treated APP and wild-type mice. Overall, findings show that candesartan shared several advantages reported previously for losartan, but it exhibited limited cognitive benefits and stronger blood pressure lowering effects. The choice of angiotensin receptor blocker may thus be critical for therapeutic efficacy in patients with vascular diseases at high risk of developing Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Bencimidazoles/uso terapéutico , Encéfalo/efectos de los fármacos , Tetrazoles/uso terapéutico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Bencimidazoles/farmacología , Compuestos de Bifenilo , Presión Sanguínea/efectos de los fármacos , Encéfalo/fisiopatología , Proliferación Celular/efectos de los fármacos , Cognición/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína Doblecortina , Masculino , Ratones , Ratones Transgénicos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiopatología , Tetrazoles/farmacología
19.
Trends Neurosci ; 41(7): 409-413, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29933772

RESUMEN

How can blood rapidly and precisely reach active neurons at a given time and location has remained enigmatic for a long time. A 2003 paper by Zonta et al. suggested key roles for astrocytes in the signaling between neurons and blood vessels. While a consensus on the specific intermediary roles of astrocytes in this process is still evolving, research in the past 15 years has led to a deeper and more refined understanding of the neuro-glio-vascular unit.

20.
Can J Physiol Pharmacol ; 96(5): 527-534, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29505736

RESUMEN

Transgenic mice constitutively overexpressing the cytokine transforming growth factor-ß1 (TGF-ß1) (TGF mice) display cerebrovascular alterations as seen in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID), but no or only subtle cognitive deficits. TGF-ß1 may exert part of its deleterious effects through interactions with angiotensin II (AngII) type 1 receptor (AT1R) signaling pathways. We test such interactions in the brain and cerebral vessels of TGF mice by measuring cerebrovascular reactivity, levels of protein markers of vascular fibrosis, nitric oxide synthase activity, astrogliosis, and mnemonic performance in mice treated (6 months) with the AT1R blocker losartan (10 mg/kg per day) or the angiotensin converting enzyme inhibitor enalapril (3 mg/kg per day). Both treatments restored the severely impaired cerebrovascular reactivity to acetylcholine, calcitonin gene-related peptide, endothelin-1, and the baseline availability of nitric oxide in aged TGF mice. Losartan, but not enalapril, significantly reduced astrogliosis and cerebrovascular levels of profibrotic protein connective tissue growth factor while raising levels of antifibrotic enzyme matrix metallopeptidase-9. Memory was unaffected by aging and treatments. The results suggest a pivotal role for AngII in TGF-ß1-induced cerebrovascular dysfunction and neuroinflammation through AT1R-mediated mechanisms. Further, they suggest that AngII blockers could be appropriate against vasculopathies and astrogliosis associated with AD and VCID.


Asunto(s)
Encéfalo/irrigación sanguínea , Gliosis/patología , Gliosis/fisiopatología , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Encéfalo/efectos de los fármacos , Enalapril/farmacología , Enalapril/uso terapéutico , Femenino , Fibrosis , Gliosis/metabolismo , Losartán/farmacología , Losartán/uso terapéutico , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...