Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(23): 15832-15839, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756854

RESUMEN

Porphyrin and porphyrinoid derivatives have been extensively studied in the assembly of catalysts and sensors, seeking biomimetic and bioinspired activity. In particular, Fe and Ni porphyrins can be used for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) by immobilization of these molecular catalysts on semiconductor materials. In this study, we designed a hybrid material containing a crystalline mesoporous TiO2 thin film in which the catalytic centres are Ni-porphyrin (NiP), Fe-porphyrin (FeP), and a NiP/FeP bimetallic system to assess whether the coexistence of both metalloporphyrins improves the OER activity. The obtained photoelectrodes were physicochemically and morphologically characterized through high-resolution FE-SEM images, UV-vis and Raman spectroscopies, cyclic voltammetry, and impedance measurements. The results show a differential behavior of the mono- and bimetallic porphyrin systems, where the Fe(iii) centre in FeP may increase the acidity and lower the reduction potential of the Ni2+/3+ couple when co-deposited with NiP leading to an improved photoelectrochemical water-oxidation performance. We have validated the cooperative effect of both metal complexes within this novel system, where the µ-peroxo-bridged interaction between Fe and Ni is integrated into a supramolecular heterometallic structure of porphyrins.

2.
Antibiotics (Basel) ; 13(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38391559

RESUMEN

Nanotechnology has emerged as a cornerstone in contemporary research, marked by the advent of advanced technologies aimed at nanoengineering materials with diverse applications, particularly to address challenges in human health. Among these challenges, antimicrobial resistance (AMR) has risen as a significant and pressing threat to public health, creating obstacles in preventing and treating persistent diseases. Despite efforts in recent decades to combat AMR, global trends indicate an ongoing and concerning increase in AMR. The primary contributors to the escalation of AMR are the misuse and overuse of various antimicrobial agents in healthcare settings. This has led to severe consequences not only in terms of compromised treatment outcomes but also in terms of substantial financial burdens. The economic impact of AMR is reflected in skyrocketing healthcare costs attributed to heightened hospital admissions and increased drug usage. To address this critical issue, it is imperative to implement effective strategies for antimicrobial therapies. This comprehensive review will explore the latest scientific breakthroughs within the metal-organic frameworks and the use of mesoporous metallic oxide derivates as antimicrobial agents. We will explore their biomedical applications in human health, shedding light on promising avenues for combating AMR. Finally, we will conclude the current state of research and offer perspectives on the future development of these nanomaterials in the ongoing battle against AMR.

3.
ACS Omega ; 8(49): 46777-46785, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107943

RESUMEN

Metal-porphyrin frameworks (MPFs) with trivalent lanthanide ions are the most sought-after materials in the past decade. Their porosities are usually complemented by optical properties imparted by the metal nodes, making them attractive multifunctional materials. Here, we report a novel family of 3D MPFs obtained through solvothermal reactions between tetrakis(4-carboxyphenyl) porphyrin (H4TCPP) and different lanthanide sources, yielding an isostructural family of compounds along the lanthanide series: [Ln2(DMF)(TCPP)1.5] for Ln = La, Ce, Nd, Pr, Er, Y, Tb, Dy, Sm, Eu, Gd, and Tm. Photoluminescent properties of selected phases were explored at room temperature. Also, the photocatalytic performance exhibited by these compounds under sunlight exposure is promising for its implementation in organic pollutant degradation. In order to study the photocatalytic activity of Ln-TCPPs in an aqueous medium, methylene blue (MB) was used as a contaminant model. The efficiency for MB degradation was Sm > Y > Yb > Gd > Er > Eu > either no catalyst or no light, obtaining more than 70% degradation at 120 min with Sm-TCPP. These results open the possibility of using these compounds in optical and optoelectronic devices for water remediation and sensing.

4.
RSC Adv ; 11(49): 31124-31130, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35498941

RESUMEN

In this work, photocatalytic reduction of methyl viologen is achieved using zinc tetra(4-N-methylpyridyl)porphine (ZnP) functionalized mesoporous titania thin films (MTTF). Metalloporphyrins are the core of natural systems that harvest energy from the sun. Thus, a bioinspired approach is used, taking advantage of ZnP sensitizing capabilities and MTTF organized structure.

5.
Electrophoresis ; 39(8): 1048-1053, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29384199

RESUMEN

Glycosylated hemoglobin (HbA1c) detection is performed routinely in hospitals as it is the most widespread confirmatory diagnosis of diabetes mellitus. Here we present a novel CE method for measuring HbA1c by introducing silica nanoparticles (NPs) modified with a boronic acid derivative (sugar loadings of 51 ± 2 µg/mg) as pseudo-stationary phase. Before the sample injection, SiO2 NP─B(OH)2 were introduced via pressure. Electrophoretic separation was explored through variation of the buffer pH and separation voltage, being the best separation, resolution and shorter separation time achieved with a 25 mM phosphate buffer pH 6.5. The calibration curve obtained was expressed as Area = 182.05%-1 × HbA1c - 377.02; R2  = 0.9826, using a UV/VIS absorbance detector at 415 nm (diode array). No interferences were observed from carbamylated or acetylated hemoglobin and the method shows a noteworthy stability. A paired t-test was applied to compare the developed CE method with a commercial HbA1c test and no significant variations have been observed at a 90% significance level.


Asunto(s)
Electroforesis de las Proteínas Sanguíneas/métodos , Hemoglobina Glucada/análisis , Electroforesis de las Proteínas Sanguíneas/instrumentación , Electroforesis Capilar/instrumentación , Electroforesis Capilar/métodos , Humanos , Nanoestructuras , Reproducibilidad de los Resultados
6.
Inorg Chem ; 55(17): 8595-602, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27482597

RESUMEN

Nanocomposites with bimetallic monolayers of porphyrins were prepared. The well-ordered metalloporphyrin monolayers covalently linked to the gold surface produce an important increase of the B band (∼400 nm) shifted 20 nm relative to that of the related high-spin iron(III) complexes in solution. The position of the B band in the bimetallic architectures is highly dependent on the relative amount of the two porphyrins, showing the most significant shift for the SiO2/APTES/AuNp/Fe-TPyP&M-TPyP (1:1) (30 nm, M = Ni(II) or Cu(II)). Resonance Raman based on the oxidation state marker bands (1553, 1354, and 390 cm(-1)) indicates that Fe-TPyP attached on gold nanoparticles adopts a low-spin Fe(II) conformation, which changes to Fe(II) intermediate spin or a low-spin Fe(III) in the presence of Cu-TPyP or Ni-TPyP. Surface-enhanced Raman scattering studies confirmed the hypothesis. MALDI-TOF analysis of the composites on gold nanoparticles was very useful in the detection of oxygenated forms of the metal complexes.

7.
Inorg Chem ; 54(19): 9342-50, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26284848

RESUMEN

The reduction of NO(•) to HNO/NO(-) under biologically compatible conditions has always been thought as unlikely, mostly because of the negative reduction potential: E°(NO(•),H(+)/HNO) = -0.55 V vs NHE at physiological pH. Nonetheless, during the past decade, several works hinted at the possible NO-to-HNO conversion mediated by moderate biological reductants. Very recently, we have shown that the reaction of NO(•) with ascorbate and aromatic alcohols occurs through a proton-coupled nucleophilic attack (PCNA) of the alcohol to NO(•), yielding an intermediate RO-N(H)O(•) species, which further decomposes to release HNO. For the present work, we decided to inspect whether other common biological aromatic alcohols obtained from foods, such as Vitamin E, or used as over-the-counter drugs, like aspirin, are able to undergo the reaction. The positive results suggest that the conversion of NO to HNO could occur far more commonly than previously expected. Taking these as the starting point, we set to review our and other groups' previous reports on the possible NO-to-HNO conversion mediated by biological compounds including phenolic drugs and vitamins, as well as several thiol-bearing compounds. Analysis of revised data prompted us to ask ourselves the following key questions: What are the most likely physio/pathological conditions for NO(•)-to-HNO conversion to take place? Which effects usually attributed to NO(•) are indeed mediated by HNO? These inquiries are discussed in the context of 2 decades of NO and HNO research.


Asunto(s)
Aspirina/química , Óxidos de Nitrógeno/química , Fenoles/química , Vitamina E/química , Radicales Libres/química , Estructura Molecular
8.
Electrophoresis ; 33(2): 334-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22222978

RESUMEN

We report a new method of immobilization of gold nanoparticles (AuNPs) on a fused-silica capillary through covalent binding. The resulting modified capillary was applied to electrophoretic systems to improve the efficiency of separation and the selectivity of selected solutes. The immobilization of AuNPs on the capillary wall was performed in a very simple and fast way without requiring heating. The surface features of an AuNP-coated capillary column were determined using the scanning electron microscopy. The chromatographic properties of AuNP-coated capillaries were investigated through variation of the buffer pH and separation voltage. Effective separations of synthetic peptides mixture were obtained on the AuNP-coated capillaries. The method shows a remarkable stability since it was reused about 900 times. The capacity factor was duplicated. Therefore, this modification is stable and can be applied to different separation purposes. A complex mixture of tryptic peptide fragments of HSA was analyzed in both the bare- and the AuNP-coated capillaries. Better electrophoretic peptide profile was observed when using the AuNP-coated capillary.


Asunto(s)
Electrocromatografía Capilar/instrumentación , Electrocromatografía Capilar/métodos , Oro/química , Nanopartículas del Metal/química , Péptidos/análisis , Proteínas/análisis , Humanos , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/aislamiento & purificación , Péptidos/aislamiento & purificación , Proteínas/aislamiento & purificación , Espectrofotometría Ultravioleta , Tripsina/química
9.
Langmuir ; 27(17): 10714-21, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21800840

RESUMEN

Metalloporphyrin molecules have a wide range of potential applications in diverse technological areas ranging from electronics to optoelectronics, electrochemistry, photophysics, chemical sensors, and catalysis. In particular, self-assembled monolayers of porphyrin molecules have recently attracted considerable interest. In this work we have studied for the first time the self-assembly of a novel Cu deutero porphyrin functionalized with disulfide moieties using electrochemical techniques, UV-vis absorption spectroscopy, polarization modulation infrared reflection absorption spectroscopy, and photoelectron spectroscopies (XPS and UPS). Experimental results indicate that the molecule adsorbs retaining its molecular integrity without forming molecular aggregates via the formation of Au-S covalent bonds. Furthermore, the monolayer consists of a packed array of molecules adsorbed with the plane of the porphyrin molecule at an angle of around 30° with respect to the surface normal. Interestingly, adsorption induces reduction of the Cu center and its consequent removal from the center of the porphyrin ring resulting in porphyrin demetalation. Our results are important in the design of self-assembled monolayers of metallo porphyrins where not only blocking of the metal center by the functional groups that drive the self-assembly should be considered but also possible adsorption induced demetalation with the consequent loss in the properties imparted by the metal center.


Asunto(s)
Cobre/química , Disulfuros/química , Oro/química , Membranas Artificiales , Metaloporfirinas/química , Adsorción , Estructura Molecular , Oxidación-Reducción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...