Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evol Lett ; 7(4): 252-261, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37475751

RESUMEN

Genotypes exhibiting an increased mutation rate, called hypermutators, can propagate in microbial populations because they can have an advantage due to the higher supply of beneficial mutations needed for adaptation. Although this is a frequently observed phenomenon in natural and laboratory populations, little is known about the influence of parameters such as the degree of maladaptation, stress intensity, and the genetic architecture for adaptation on the emergence of hypermutators. To address this knowledge gap, we measured the emergence of hypermutators over ~1,000 generations in experimental Escherichia coli populations exposed to different levels of osmotic or antibiotic stress. Our stress types were chosen based on the assumption that the genetic architecture for adaptation differs between them. Indeed, we show that the size of the genetic basis for adaptation is larger for osmotic stress compared to antibiotic stress. During our experiment, we observed an increased emergence of hypermutators in populations exposed to osmotic stress but not in those exposed to antibiotic stress, indicating that hypermutator emergence rates are stress type dependent. These results support our hypothesis that hypermutator emergence is linked to the size of the genetic basis for adaptation. In addition, we identified other parameters that covaried with stress type (stress level and IS transposition rates) that might have contributed to an increased hypermutator provision and selection. Our results provide a first comparison of hypermutator emergence rates under varying stress conditions and point towards complex interactions of multiple stress-related factors on the evolution of mutation rates.

2.
J Vis Exp ; (192)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36805675

RESUMEN

Structural variants (SVs) (i.e., deletions, insertions, duplications, and inversions) are now known to play an important role in phenotypic variation, and consequently in processes such as disease determination or adaptation to a new environment. However, single-nucleotide variants receive much more attention than SVs, probably because they are easier to detect, and their phenotypic effects are easier to predict. The development of short- and long-read deep sequencing technologies have strongly improved the detection of SVs, but the quantification of their frequency from pooled sequencing (poolseq) data is still technically complex and expensive. Here, we present a rather simple and inexpensive method, which allows researchers to follow the dynamics of SV allele frequency. As an example of application, we follow the frequency of an insertion sequence (IS) insertion in experimental evolution populations of bacteria. This method is based on the design of triplets of primers around the structural variant borders, such that the amplicons produced by amplification of the wild-type (WT) and derived alleles differ in size by at least 5%, and that their amplification efficiency is similar. The quantity of each amplicon is then determined by parallel capillary electrophoresis and normalized to a calibration curve. This method can be easily extended to the quantification of the frequency of other structural variants (deletions, duplications, and inversions) and to pool-seq approaches of natural populations, including within-patient pathogen populations.


Asunto(s)
Aclimatación , Electroforesis Capilar , Humanos , Alelos , Calibración , Cartilla de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA