Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38014224

RESUMEN

To form functional circuits, neurons must settle in their appropriate cellular locations and then project and elaborate neurites to contact their target synaptic neuropils. Laminar organization within the vertebrate retinal inner plexiform layer (IPL) facilitates pre- and postsynaptic neurite targeting, yet, the precise mechanisms underlying establishment of functional IPL subdomains are not well understood. Here we explore mechanisms defining the compartmentalization of OFF and ON neurites generally, and OFF and ON direction-selective neurites specifically, within the developing IPL. We show that semaphorin 6A (Sema6A), a repulsive axon guidance cue, is required for delineation of OFF versus ON circuits within the IPL: in the Sema6a null IPL, the boundary between OFF and ON domains is blurred. Furthermore, Sema6A expressed by retinal ganglion cells (RGCs) directs laminar segregation of OFF and ON starburst amacrine cell (SAC) dendritic scaffolds, which themselves serve as a substrate upon which other retinal neurites elaborate. These results demonstrate for the first time that RGCs, the first neuron-type born within the retina, play an active role in functional specialization of the IPL. Retinal ganglion cell-dependent regulation of OFF and ON starburst amacrine cell dendritic scaffold segregation prevents blurring of OFF versus ON functional domains in the murine inner plexiform layer.

2.
Cell ; 185(1): 77-94, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995518

RESUMEN

Neurons of the mammalian central nervous system fail to regenerate. Substantial progress has been made toward identifying the cellular and molecular mechanisms that underlie regenerative failure and how altering those pathways can promote cell survival and/or axon regeneration. Here, we summarize those findings while comparing the regenerative process in the central versus the peripheral nervous system. We also highlight studies that advance our understanding of the mechanisms underlying neural degeneration in response to injury, as many of these mechanisms represent primary targets for restoring functional neural circuits.


Asunto(s)
Axones/metabolismo , Sistema Nervioso Central/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Sistema Nervioso Periférico/metabolismo
3.
Dev Biol ; 477: 273-283, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34118273

RESUMEN

The vertebrate retina contains an array of neural circuits that detect distinct features in visual space. Direction-selective (DS) circuits are an evolutionarily conserved retinal circuit motif - from zebrafish to rodents to primates - specialized for motion detection. During retinal development, neuronal subtypes that wire DS circuits form exquisitely precise connections with each other to shape the output of retinal ganglion cells tuned for specific speeds and directions of motion. In this review, we follow the chronology of DS circuit development in the vertebrate retina, including the cellular, molecular, and activity-dependent mechanisms that regulate the formation of DS circuits, from cell birth and migration to synapse formation and refinement. We highlight recent findings that identify genetic programs critical for specifying neuronal subtypes within DS circuits and molecular interactions essential for responses along the cardinal axes of motion. Finally, we discuss the roles of DS circuits in visual behavior and in certain human visual disease conditions. As one of the best-characterized circuits in the vertebrate retina, DS circuits represent an ideal model system for studying the development of neural connectivity at the level of individual genes, cells, and behavior.


Asunto(s)
Retina/embriología , Retina/fisiología , Vertebrados/fisiología , Vías Visuales , Animales , Humanos , Neurogénesis , Neuronas/fisiología , Nistagmo Patológico/genética , Retina/citología , Células Ganglionares de la Retina/fisiología , Sinapsis , Vertebrados/embriología
4.
Neuron ; 96(5): 1084-1098.e7, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29154130

RESUMEN

Regulation of AMPA-type glutamate receptor (AMPAR) number at synapses is a major mechanism for controlling synaptic strength during homeostatic scaling in response to global changes in neural activity. We show that the secreted guidance cue semaphorin 3F (Sema3F) and its neuropilin-2 (Npn-2)/plexinA3 (PlexA3) holoreceptor mediate homeostatic plasticity in cortical neurons. Sema3F-Npn-2/PlexA3 signaling is essential for cell surface AMPAR homeostatic downscaling in response to an increase in neuronal activity, Npn-2 associates with AMPARs, and Sema3F regulates this interaction. Therefore, Sema3F-Npn-2/PlexA3 signaling controls both synapse development and synaptic plasticity.


Asunto(s)
Corteza Cerebral/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Neuropilina-2/fisiología , Receptores AMPA/fisiología , Animales , Bicuculina/farmacología , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Femenino , Antagonistas del GABA/farmacología , Homeostasis/efectos de los fármacos , Masculino , Proteínas de la Membrana/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuropilina-2/efectos de los fármacos , Cultivo Primario de Células , Ratas Sprague-Dawley , Receptores AMPA/efectos de los fármacos , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA