Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Genet ; 135(5): 569-586, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27071622

RESUMEN

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV.


Asunto(s)
Genoma Humano , Impresión Genómica , Síndrome de Circulación Fetal Persistente/patología , Alveolos Pulmonares/anomalías , Venas Pulmonares/patología , Cromosomas Humanos Par 16/genética , Hibridación Genómica Comparativa , Femenino , Factores de Transcripción Forkhead/genética , Genes Letales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Masculino , Linaje , Síndrome de Circulación Fetal Persistente/genética , Alveolos Pulmonares/patología , Eliminación de Secuencia
2.
Am J Med Genet A ; 140(4): 322-30, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16419137

RESUMEN

We report on an unusual family with an autosomal dominant limb-girdle type of myopathy and bone fragility. This family was previously reported by Henry et al. [1958] as autosomal dominant progressive limb girdle "muscular dystrophy" with propensity to fractures and defective healing of long bones. Clinical, biochemical, and radiological aspects were evaluated in eight living relatives in this family (three males and five females) and in eight deceased individuals. The average age-of-onset of the limb-girdle myopathy was 31 years occurring in 87% of affected individuals. The average age of onset of fractures was 24 years occurring in 88% of affected individuals. Biochemical analysis showed a mean alkaline phosphatase (ALP) of 64 U/L (normal 30-120) and borderline high creatine kinase (CK) of 213 U/L (normal 4-220). Radiographs revealed coarse trabeculation, patchy sclerosis, cortical thickening, and narrowing of the medullary cavity with an appearance not considered typical of Paget disease of bone (PDB) or of fibrous dysplasia. Results of nerve conduction studies were normal, and electromyograms and muscle biopsies documented non-specific myopathic changes. There is premature graying with thin hair, thin skin, hernias and the affected individuals appear older than their chronological age, and three members had a clotting disorder. Linkage analysis for markers for the chromosome 9p22.3-q12 locus indicated that the disorder in this family does not segregate with markers in the critical region of limb-girdle/inclusion body myopathy, PDB, and frontotemporal dementia (FTD) [IBMPFD, OMIM #605382]. Sequencing of Valosin-containing protein (VCP), the gene associated with IBMPFD, did not identify mutations. We have excluded linkage to the known loci for limb-girdle type of myopathy and bone disease and excluded several candidate genes. Elucidation of the novel molecular basis of this disorder may provide valuable links between bone, collagen and muscle, and targeted therapeutic options.


Asunto(s)
Fracturas Óseas/diagnóstico , Genes Dominantes , Distrofia Muscular de Cinturas/diagnóstico , Adulto , Edad de Inicio , Anciano , Fosfatasa Alcalina/metabolismo , Cromosomas Humanos Par 9/genética , Creatina Quinasa/metabolismo , Femenino , Fracturas Óseas/genética , Ligamiento Genético , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Distrofia Muscular de Cinturas/genética , Mutación/genética , Linaje
3.
Hum Genet ; 118(3-4): 508-14, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16244874

RESUMEN

Progressive myopathy of a limb-girdle distribution and bone fragility is a rare autosomal dominant disorder of unknown etiology. Affected individuals, within this family, present with various combinations of progressive muscle weakness, easy fracturing, and poor healing of long bones. Additional features include premature graying with thin hair, thin skin, hernias, and clotting disorders. Electromyograms show myopathic changes and biopsies reveal non-specific myopathic changes. Skeletal radiographs demonstrate coarse trabeculation, patchy sclerosis, cortical thickening, and narrowing of medullary cavities. We report genetic mapping of this disorder to chromosome 9p21-p22 in a multigenerational family. A genome-wide scan for the disease locus obtained a maximal LOD score of 3.74 for marker GATA87E02 N (D9S1121). Haplotype analysis localized the disease gene within a 15 Mb interval flanked by markers AGAT142P and GATA5E06P. This region also localizes diaphyseal medullary stenosis with malignant fibrous histiocytoma (DMS-MFH). Identification of the disease gene will be necessary to understand the pathogenesis of this complex disorder.


Asunto(s)
Mapeo Cromosómico , Cromosomas Humanos Par 9 , Fracturas Óseas/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Adolescente , Adulto , Anciano , Femenino , Fracturas Óseas/etiología , Marcadores Genéticos , Haplotipos , Humanos , Patrón de Herencia , Masculino , Persona de Mediana Edad , Distrofia Muscular de Cinturas/fisiopatología , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...