Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 25(15): 3284-3302, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27365498

RESUMEN

Mouse models of the transcriptional modulator Methyl-CpG-Binding Protein 2 (MeCP2) have advanced our understanding of Rett syndrome (RTT). RTT is a 'prototypical' neurodevelopmental disorder with many clinical features overlapping with other intellectual and developmental disabilities (IDD). Therapeutic interventions for RTT may therefore have broader applications. However, the reliance on the laboratory mouse to identify viable therapies for the human condition may present challenges in translating findings from the bench to the clinic. In addition, the need to identify outcome measures in well-chosen animal models is critical for preclinical trials. Here, we report that a novel Mecp2 rat model displays high face validity for modelling psychomotor regression of a learned skill, a deficit that has not been shown in Mecp2 mice. Juvenile play, a behavioural feature that is uniquely present in rats and not mice, is also impaired in female Mecp2 rats. Finally, we demonstrate that evaluating the molecular consequences of the loss of MeCP2 in both mouse and rat may result in higher predictive validity with respect to transcriptional changes in the human RTT brain. These data underscore the similarities and differences caused by the loss of MeCP2 among divergent rodent species which may have important implications for the treatment of individuals with disease-causing MECP2 mutations. Taken together, these findings demonstrate that the Mecp2 rat model is a complementary tool with unique features for the study of RTT and highlight the potential benefit of cross-species analyses in identifying potential disease-relevant preclinical outcome measures.


Asunto(s)
Conducta Animal , Proteína 2 de Unión a Metil-CpG , Mutación , Síndrome de Rett , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatología
2.
Behav Neurosci ; 128(2): 103-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24773431

RESUMEN

Animal models are critical for gaining insights into autism spectrum disorder (ASD). Despite their apparent advantages to mice for neural studies, rats have not been widely used for disorders of the human CNS, such as ASD, for the lack of convenient genome manipulation tools. Here we describe two of the first transgenic rat models for ASD, developed using zinc-finger nuclease (ZFN) methodologies, and their initial behavioral assessment using a rapid juvenile test battery. A syndromic and nonsyndromic rat model for ASD were created as two separate knockout rat lines with heritable disruptions in the genes encoding Fragile X mental retardation protein (FMRP) and Neuroligin3 (NLGN3). FMRP, a protein with numerous proposed functions including regulation of mRNA and synaptic protein synthesis, and NLGN3, a member of the neuroligin synaptic cell-adhesion protein family, have been implicated in human ASD. Juvenile subjects from both knockout rat lines exhibited abnormalities in ASD-relevant phenotypes including juvenile play, perseverative behaviors, and sensorimotor gating. These data provide important first evidence regarding the utility of rats as genetic models for investigating ASD-relevant genes.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Trastornos Generalizados del Desarrollo Infantil/genética , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Conducta Social , Animales , Trastornos Generalizados del Desarrollo Infantil/psicología , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas
3.
Bioinformatics ; 28(3): 301-5, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22155864

RESUMEN

MOTIVATION: Cell-based phenotypic screens using small molecule inhibitors is an important technology for early drug discovery if the relationship between the disease-related cellular phenotype and inhibitors' biological targets can be determined. However, chemical inhibitors are rightfully believed to be less specific than perturbation by biological agents, such as antibody and small inference RNA. Therefore, it is often a challenge in small molecule phenotypic screening to infer the causality between a particular cellular phenotype and the inactivation of the responsible protein due to the off-target effect of the inhibitors. RESULTS: In this article, we present a Roche in-house effort of screening 746 structurally diverse compounds for their cytotoxicity in HeLa cells measured by high content imaging technology. These compounds were also systematically profiled for the targeted and off-target binding affinity to a panel of 25 pre-selected protein kinases in a cell-free system. In an effort to search for the kinases whose activities are crucial for cell survival, we found that the simple association method such as the chi-square test yields a large number of false positives because the observed cytotoxic phenotype is likely to be the result of promiscuous action of less specific inhibitors instead of true consequence of inactivation of single relevant target. We demonstrated that a stratified categorical data analysis technique such as the Cochran-Mantel-Haenszel test is an effective approach to extract the meaningful biological connection from the spurious correlation resulted from confounding covariates. This study indicates that, empowered by appropriate statistical adjustment, small molecule inhibitor perturbation remains a powerful tool to pin down the relevant biomarker for drug safety and efficacy research. CONTACT: xin.wei@roche.com SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento , Inhibidores de Proteínas Quinasas/farmacología , Supervivencia Celular , Sistema Libre de Células , Células HeLa , Humanos
4.
Autism Res ; 4(1): 40-56, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21268289

RESUMEN

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability in humans. In addition to cognitive impairment, patients may exhibit hyperactivity, attention deficits, social difficulties and anxiety, and autistic-like behaviors. The degree to which patients display these behaviors varies considerably and is influenced by family history, suggesting that genetic modifiers play a role in the expression of behaviors in FXS. Several studies have examined behavior in a mouse model of FXS in which the Fmr1 gene has been ablated. Most of those studies were done in Fmr1 knockout mice on a pure C57BL/6 or FVB strain background. To gain a better understanding of the effects of genetic background on behaviors resulting from the loss of Fmr1 gene expression, we generated F1 hybrid lines from female Fmr1 heterozygous mice on a pure C57BL/6J background bred with male Fmr1 wild-type (WT) mice of various background strains (A/J, DBA/2J, FVB/NJ, 129S1/SvImJ and CD-1). Male Fmr1 knockout and WT littermates from each line were examined in an extensive behavioral test battery. Results clearly indicate that multiple behavioral responses are dependent on genetic background, including autistic-like traits that are present on limited genetic backgrounds. This approach has allowed us to identify improved models for different behavioral symptoms present in FXS including autistic-like traits.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Fenotipo , Conducta Social , Animales , Animales Recién Nacidos/genética , Niño , Análisis Mutacional de ADN , Conducta Exploratoria , Femenino , Tamización de Portadores Genéticos , Genotipo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Destreza Motora , Desempeño Psicomotor , Filtrado Sensorial/genética , Conducta Estereotipada
5.
Behav Brain Res ; 218(1): 29-41, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21093492

RESUMEN

Autism spectrum disorder (ASD) diagnoses are behaviorally based with no defined universal biomarkers, occur at a 1:110 ratio in the population, and predominantly affect males compared to females at approximately a 4:1 ratio. One approach to investigate and identify causes of ASD is to use organisms that display abnormal behavioral responses that model ASD-related impairments. This study describes a novel transgenic mouse, MALTT, which was generated using a forward genetics approach. It was determined that the transgene integrated within a non-coding region on the X chromosome. The MALTT line exhibited a complete repertoire of ASD-like behavioral deficits in all three domains required for an ASD diagnosis: reciprocal social interaction, communication, and repetitive or inflexible behaviors. Specifically, MALTT male mice showed deficits in social interaction and interest, abnormalities in pup and juvenile ultrasonic vocalization communications, and exhibited a repetitive stereotypy. Abnormalities were also observed in the domain of sensory function, a secondary phenotype prevalently associated with ASD. Mapping and expression studies suggested that the Fam46 gene family may be linked to the observed ASD-related behaviors. The MALTT line provides a unique genetic model for examining the underlying biological mechanisms involved in ASD-related behaviors.


Asunto(s)
Agresión/psicología , Trastorno Autístico/psicología , Modelos Animales de Enfermedad , Conducta Social , Análisis de Varianza , Animales , Trastorno Autístico/genética , Femenino , Masculino , Ratones , Ratones Transgénicos , Filtrado Sensorial , Conducta Estereotipada , Vocalización Animal
6.
Biochemistry ; 41(3): 788-96, 2002 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-11790100

RESUMEN

S100A1, a member of the S100 protein family, is an EF-hand containing Ca(2+)-binding protein (93 residues per subunit) with noncovalent interactions at its dimer interface. Each subunit of S100A1 has four alpha-helices and a small antiparallel beta-sheet consistent with two helix-loop-helix calcium-binding domains [Baldiserri et al. (1999) J. Biomol. NMR 14, 87-88]. In this study, the three-dimensional structure of reduced apo-S100A1 was determined by NMR spectroscopy using a total of 2220 NOE distance constraints, 258 dihedral angle constraints, and 168 backbone hydrogen bond constraints derived from a series of 2D, 3D, and 4D NMR experiments. The final structure was found to be globular and compact with the four helices in each subunit aligning to form a unicornate-type four-helix bundle. Intermolecular NOE correlations were observed between residues in helices 1 and 4 from one subunit to residues in helices 1' and 4' of the other subunit, respectively, consistent with the antiparallel alignment of the two subunits to form a symmetric X-type four-helix bundle as found for other members of the S100 protein family. Because of the similarity of the S100A1 dimer interface to that found for S100B, it was possible to calculate a model of the S100A1/B heterodimer. This model is consistent with a number of NMR chemical shift changes observed when S100A1 is titrated into a sample of (15)N-labeled S100B. Helix 3 (and 3') of S100A1 was found to have an interhelical angle of -150 degrees with helix 4 (and 4') in the apo state. This crossing angle is quite different (>50 degrees ) from that typically found in other EF-hand containing proteins such as apocalmodulin and apotroponin C but more similar to apo-S100B, which has an interhelical angle of -166 degrees. As with S100B, it is likely that the second EF-hand of apo-S100A1 reorients dramatically upon the addition of Ca(2+), which can explain the Ca(2+) dependence that S100A1 has for binding several of its biological targets.


Asunto(s)
Apoproteínas/química , Proteínas de Unión al Calcio/química , Isótopos de Carbono , Clonación Molecular , Dimerización , Escherichia coli , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Isótopos de Nitrógeno , Conformación Proteica , Estructura Secundaria de Proteína , Subunidades de Proteína , Proteínas S100 , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...