Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood ; 140(14): 1592-1606, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35767701

RESUMEN

Adult hematopoietic stem cells (HSCs) are predominantly quiescent and can be activated in response to acute stress such as infection or cytotoxic insults. STAT1 is a pivotal downstream mediator of interferon (IFN) signaling and is required for IFN-induced HSC proliferation, but little is known about the role of STAT1 in regulating homeostatic hematopoietic stem/progenitor cells (HSPCs). Here, we show that loss of STAT1 altered the steady state HSPC landscape, impaired HSC function in transplantation assays, delayed blood cell regeneration following myeloablation, and disrupted molecular programs that protect HSCs, including control of quiescence. Our results also reveal STAT1-dependent functional HSC heterogeneity. A previously unrecognized subset of homeostatic HSCs with elevated major histocompatibility complex class II (MHCII) expression (MHCIIhi) displayed molecular features of reduced cycling and apoptosis and was refractory to 5-fluorouracil-induced myeloablation. Conversely, MHCIIlo HSCs displayed increased megakaryocytic potential and were preferentially expanded in CALR mutant mice with thrombocytosis. Similar to mice, high MHCII expression is a feature of human HSCs residing in a deeper quiescent state. Our results therefore position STAT1 at the interface of stem cell heterogeneity and the interplay between stem cells and the adaptive immune system, areas of broad interest in the wider stem cell field.


Asunto(s)
Células Madre Hematopoyéticas , Megacariocitos , Factor de Transcripción STAT1 , Animales , Proliferación Celular , Fluorouracilo/farmacología , Células Madre Hematopoyéticas/metabolismo , Humanos , Interferones , Megacariocitos/metabolismo , Ratones , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
2.
Blood ; 132(8): 791-803, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-29991556

RESUMEN

Recent advances in single-cell technologies have permitted the investigation of heterogeneous cell populations at previously unattainable resolution. Here we apply such approaches to resolve the molecular mechanisms driving disease in mouse hematopoietic stem cells (HSCs), using JAK2V617F mutant myeloproliferative neoplasms (MPNs) as a model. Single-cell gene expression and functional assays identified a subset of JAK2V617F mutant HSCs that display defective self-renewal. This defect is rescued at the single HSC level by crossing JAK2V617F mice with mice lacking TET2, the most commonly comutated gene in patients with MPN. Single-cell gene expression profiling of JAK2V617F-mutant HSCs revealed a loss of specific regulator genes, some of which were restored to normal levels in single TET2/JAK2 mutant HSCs. Of these, Bmi1 and, to a lesser extent, Pbx1 and Meis1 overexpression in JAK2-mutant HSCs could drive a disease phenotype and retain durable stem cell self-renewal in functional assays. Together, these single-cell approaches refine the molecules involved in clonal expansion of MPNs and have broad implications for deconstructing the molecular network of normal and malignant stem cells.


Asunto(s)
Autorrenovación de las Células , Regulación Neoplásica de la Expresión Génica , Neoplasias Hematológicas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Janus Quinasa 2/metabolismo , Mutación Missense , Trastornos Mieloproliferativos/metabolismo , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Sustitución de Aminoácidos , Animales , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Células Madre Hematopoyéticas/patología , Janus Quinasa 2/genética , Ratones , Ratones Transgénicos , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/patología
3.
Blood ; 131(6): 649-661, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29282219

RESUMEN

Somatic mutations in the endoplasmic reticulum chaperone calreticulin (CALR) are detected in approximately 40% of patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF). Multiple different mutations have been reported, but all result in a +1-bp frameshift and generate a novel protein C terminus. In this study, we generated a conditional mouse knockin model of the most common CALR mutation, a 52-bp deletion. The mutant novel human C-terminal sequence is integrated into the otherwise intact mouse CALR gene and results in mutant CALR expression under the control of the endogenous mouse locus. CALRdel/+ mice develop a transplantable ET-like disease with marked thrombocytosis, which is associated with increased and morphologically abnormal megakaryocytes and increased numbers of phenotypically defined hematopoietic stem cells (HSCs). Homozygous CALRdel/del mice developed extreme thrombocytosis accompanied by features of MF, including leukocytosis, reduced hematocrit, splenomegaly, and increased bone marrow reticulin. CALRdel/+ HSCs were more proliferative in vitro, but neither CALRdel/+ nor CALRdel/del displayed a competitive transplantation advantage in primary or secondary recipient mice. These results demonstrate the consequences of heterozygous and homozygous CALR mutations and provide a powerful model for dissecting the pathogenesis of CALR-mutant ET and PMF.


Asunto(s)
Calreticulina/genética , Autorrenovación de las Células/genética , Células Madre Hematopoyéticas/fisiología , Mielofibrosis Primaria/genética , Trombocitosis/genética , Animales , Células Cultivadas , Homocigoto , Leucocitosis/genética , Leucocitosis/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense , Esplenomegalia/genética , Esplenomegalia/patología , Trombocitemia Esencial/genética , Trombocitemia Esencial/patología
4.
Cell Rep ; 19(8): 1503-1511, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28538171

RESUMEN

Aging of the hematopoietic stem cell (HSC) compartment is characterized by lineage bias and reduced stem cell function, the molecular basis of which is largely unknown. Using single-cell transcriptomics, we identified a distinct subpopulation of old HSCs carrying a p53 signature indicative of stem cell decline alongside pro-proliferative JAK/STAT signaling. To investigate the relationship between JAK/STAT and p53 signaling, we challenged HSCs with a constitutively active form of JAK2 (V617F) and observed an expansion of the p53-positive subpopulation in old mice. Our results reveal cellular heterogeneity in the onset of HSC aging and implicate a role for JAK2V617F-driven proliferation in the p53-mediated functional decline of old HSCs.


Asunto(s)
Compartimento Celular , Senescencia Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Ciclo Celular , Proliferación Celular , Janus Quinasa 2 , Ratones , Células Mieloides/metabolismo , Factores de Transcripción/metabolismo
5.
Blood ; 123(20): 3139-51, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24692758

RESUMEN

Genomic regions of acquired uniparental disomy (UPD) are common in malignancy and frequently harbor mutated oncogenes. Homozygosity for such gain-of-function mutations is thought to modulate tumor phenotype, but direct evidence has been elusive. Polycythemia vera (PV) and essential thrombocythemia (ET), 2 subtypes of myeloproliferative neoplasms, are associated with an identical acquired JAK2V617F mutation but the mechanisms responsible for distinct clinical phenotypes remain unclear. We provide direct genetic evidence and demonstrate that homozygosity for human JAK2V617F in knock-in mice results in a striking phenotypic switch from an ET-like to PV-like phenotype. The resultant erythrocytosis is driven by increased numbers of early erythroid progenitors and enhanced erythroblast proliferation, whereas reduced platelet numbers are associated with impaired platelet survival. JAK2V617F-homozygous mice developed a severe hematopoietic stem cell defect, suggesting that additional lesions are needed to sustain clonal expansion. Together, our results indicate that UPD for 9p plays a causal role in the PV phenotype in patients as a consequence of JAK2V617F homozygosity. The generation of a JAK2V617F allelic series of mice with a dose-dependent effect on hematopoiesis provides a powerful model for studying the consequences of mutant JAK2 homozygosity.


Asunto(s)
Janus Quinasa 2/genética , Mutación , Policitemia Vera/genética , Trombocitemia Esencial/genética , Animales , Plaquetas/metabolismo , Plaquetas/patología , Eritroblastos/metabolismo , Eritroblastos/patología , Femenino , Técnicas de Sustitución del Gen , Homocigoto , Humanos , Masculino , Megacariocitos/metabolismo , Megacariocitos/patología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Policitemia Vera/patología , Trombocitemia Esencial/patología , Disomía Uniparental/genética , Disomía Uniparental/patología
6.
PLoS Biol ; 11(6): e1001576, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23750118

RESUMEN

Recent descriptions of significant heterogeneity in normal stem cells and cancers have altered our understanding of tumorigenesis, emphasizing the need to understand how single stem cells are subverted to cause tumors. Human myeloproliferative neoplasms (MPNs) are thought to reflect transformation of a hematopoietic stem cell (HSC) and the majority harbor an acquired V617F mutation in the JAK2 tyrosine kinase, making them a paradigm for studying the early stages of tumor establishment and progression. The consequences of activating tyrosine kinase mutations for stem and progenitor cell behavior are unclear. In this article, we identify a distinct cellular mechanism operative in stem cells. By using conditional knock-in mice, we show that the HSC defect resulting from expression of heterozygous human JAK2V617F is both quantitative (reduced HSC numbers) and qualitative (lineage biases and reduced self-renewal per HSC). The defect is intrinsic to individual HSCs and their progeny are skewed toward proliferation and differentiation as evidenced by single cell and transplantation assays. Aged JAK2V617F show a more pronounced defect as assessed by transplantation, but mice that transform reacquire competitive self-renewal ability. Quantitative analysis of HSC-derived clones was used to model the fate choices of normal and JAK2-mutant HSCs and indicates that JAK2V617F reduces self-renewal of individual HSCs but leaves progenitor expansion intact. This conclusion is supported by paired daughter cell analyses, which indicate that JAK2-mutant HSCs more often give rise to two differentiated daughter cells. Together these data suggest that acquisition of JAK2V617F alone is insufficient for clonal expansion and disease progression and causes eventual HSC exhaustion. Moreover, our results show that clonal expansion of progenitor cells provides a window in which collaborating mutations can accumulate to drive disease progression. Characterizing the mechanism(s) of JAK2V617F subclinical clonal expansions and the transition to overt MPNs will illuminate the earliest stages of tumor establishment and subclone competition, fundamentally shifting the way we treat and manage cancers.


Asunto(s)
Sustitución de Aminoácidos/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/enzimología , Janus Quinasa 2/genética , Mutación/genética , Animales , Antígenos CD/metabolismo , Recuento de Células , Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Clonales , Técnicas de Sustitución del Gen , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Trastornos Mieloproliferativos/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...