Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kidney360 ; 3(2): 341-356, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35373128

RESUMEN

Symmetric dimethylarginine (SDMA) is an excretory renal function biomarker shown to correlate well with glomerular filtration rate in dogs, cats, humans, and rats. The objectives of this study were to determine utility of serum SDMA as a renal biomarker in a rat model of gentamicin-induced renal injury and to provide validation of a commercially available SDMA immunoassay for rat serum. Rats were randomly assigned to one of three dose levels of gentamicin (20, 50, or 100 mg/kg) or a vehicle control group and dosed once daily by subcutaneous injection for either four or ten days. Serum and urine renal biomarker evaluation, including serum SDMA, hematologic and serum biochemical analysis, urinalysis, and histologic examination of kidney, were performed. Before biologic validation, analytic validation of the SDMA immunoassay for rat serum was performed, including assessment of assay accuracy, precision, analytical sensitivity, linearity, analyte stability, and interference testing. Among markers of excretory renal function, SDMA and serum creatinine increased earliest and at the lowest gentamicin concentrations and were significantly increased in both the 50- and 100- mg/kg dose levels in the four- and ten-dose treatment groups compared with controls. Time- and dose-dependent increases were noted for all urinary biomarkers investigated in this study, with microalbumin being most responsive and osteopontin least responsive for detection of gentamicin-induced injury across dose levels and schedules investigated. The SDMA immunoassay met all set quality requirements assessed in analytical validation. This study is the first to investigate performance of serum SDMA compared with other excretory renal function markers in a rat gentamicin acute toxicity model. In this study, serum SDMA was an earlier biomarker for detection of gentamicin-induced toxicity than serum cystatin C, BUN, and creatinine clearance. The SDMA immunoassay provides a reliable commercially available assay for future renal investigations in rat models.


Asunto(s)
Enfermedades de los Perros , Insuficiencia Renal Crónica , Animales , Arginina/análogos & derivados , Biomarcadores , Perros , Gentamicinas/toxicidad , Riñón/fisiología , Ratas
2.
Toxicol Sci ; 130(2): 229-44, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22872058

RESUMEN

Alanine aminotransferase (ALT) activity is the most frequently relied upon reference standard for monitoring liver injury in humans and nonclinical species. However, limitations of ALT include a lack of specificity for diagnosing liver injury (e.g., present in muscle and the gastrointestinal tract), its inability to monitor certain types of hepatic injury (e.g., biliary injury), and ambiguity with respect to interpretation of modest or transient elevations (< 3× upper limit of normal). As an initial step to both understand and qualify additional biomarkers of hepatotoxicity that may add value to ALT, three novel candidates have been evaluated in 34 acute toxicity rat studies: (1) alpha-glutathione S-transferase (GSTA), (2) arginase 1 (ARG1), and (3) 4-hydroxyphenylpyruvate dioxygenase (HPD). The performance of each biomarker was assessed for its diagnostic ability to accurately detect hepatocellular injury (i.e., microscopic histopathology), singularly or in combination with ALT. All three biomarkers, either alone or in combination with ALT, improved specificity when compared with ALT alone. Hepatocellular necrosis and/or degeneration were detected by all three biomarkers in the majority of animals. ARG1 and HPD were also sensitive in detecting single-cell necrosis in the absence of more extensive hepatocellular necrosis/degeneration. ARG1 showed the best sensitivity for detecting biliary injury with or without ALT. All the biomarkers were able to detect biliary injury with single-cell necrosis. Taken together, these novel liver toxicity biomarkers, GSTA, ARG1, and HPD, add value (both enhanced specificity and sensitivity) to the measurement of ALT alone for monitoring drug-induced liver injury in rat.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Arginasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Glutatión Transferasa/metabolismo , Isoenzimas/metabolismo , Hígado/enzimología , Alanina Transaminasa/metabolismo , Animales , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Modelos Lineales , Hígado/efectos de los fármacos , Hígado/patología , Modelos Logísticos , Masculino , Valor Predictivo de las Pruebas , Curva ROC , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Sensibilidad y Especificidad , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...