Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Heliyon ; 9(10): e20875, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37867862

RESUMEN

The catalytic wet air oxidation (CWAO) of p-hydroxybenzoic acid (p-HBA) was conducted in a batch reactor at 140 °C, and at a total air pressure of 50 bar over Ru-based catalysts. Four materials were selected as supports - TiO2, CeO2-TiO2, ZrO2-TiO2, and La2O3-TiO2 - all of which had mesopores in their texture and pollutant adsorption capacities. The supports were prepared by the sol-gel method, and then impregnated with 3 wt% of Ru precursor. Such characterization techniques as N2-sorption, XRD, XPS, H2-TPR, NH3-TPD, TEM, and HAADF-STEM were used to analyze the different solids. The correlation between catalytic activities and physicochemical properties was discussed. A significant specific surface area (SBET), a large amount of surface-active oxygen, and Lewis acidity sites were observed on cerium-containing catalysts (Ru/CeTi). Fresh Ru catalysts containing cerium showed higher activity than Ru/TiO2, Ru/ZrTi, and Ru/LaTi catalysts. It is assumed that the acidic sites and surface oxygen trap the p-HBA molecule, thus increasing the catalytic properties of the Ru particles which interact with the surface oxygen through the cerium redox process (Ce3+/Ce4+). As the presence of cerium increases surface-active oxygen, it inhibits the deposition of carbon on the surface of the Ru catalyst. The pseudo-second order (PSO) model adequately described the kinetic data of the p-HBA oxidation reaction using Ru catalysts.

2.
Water Sci Technol ; 79(7): 1276-1286, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31123227

RESUMEN

This paper is built on the Fenton-like oxidation of p-hydroxybenzoic acid (p-HBZ) in the presence of H2O2 and 3%Fe supported on CeO2-TiO2 aerogels under mild conditions. These catalysts were deeply characterized by X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS). The effect of thermal treatment, pH (2-3, 5, 7), H2O2/p-HBZ molar ratio (5, 15, 20, 25) and reaction temperature (25 °C, 40 °C and 60 °C) on the catalytic properties of supported Fe catalysts are studied. Our results highlight the role of CeO2 and the calcination of the catalyst to obtain the highest catalytic properties after 10 min: 73% of p-HBZ conversion and 52% of total organic carbon (TOC) abatement.


Asunto(s)
Hidroxibenzoatos/química , Catálisis , Peróxido de Hidrógeno/química , Hierro/química , Oxidación-Reducción , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA