Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Agron Sustain Dev ; 44(3): 25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660316

RESUMEN

Sorghum production system in the semi-arid region of Africa is characterized by low yields which are generally attributed to high rainfall variability, poor soil fertility, and biotic factors. Production constraints must be well understood and quantified to design effective sorghum-system improvements. This study uses the state-of-the-art in silico methods and focuses on characterizing the sorghum production regions in Mali for drought occurrence and its effects on sorghum productivity. For this purpose, we adapted the APSIM-sorghum module to reproduce two cultivated photoperiod-sensitive sorghum types across a latitude of major sorghum production regions in Western Africa. We used the simulation outputs to characterize drought stress scenarios. We identified three main drought scenarios: (i) no-stress; (ii) early pre-flowering drought stress; and (iii) drought stress onset around flowering. The frequency of drought stress scenarios experienced by the two sorghum types across rainfall zones and soil types differed. As expected, the early pre-flowering and flowering drought stress occurred more frequently in isohyets < 600 mm, for the photoperiod-sensitive, late-flowering sorghum type. In isohyets above 600 mm, the frequency of drought stress was very low for both cultivars. We quantified the consequences of these drought scenarios on grain and biomass productivity. The yields of the highly-photoperiod-sensitive sorghum type were quite stable across the higher rainfall zones > 600 mm, but was affected by the drought stress in the lower rainfall zones < 600 mm. Comparatively, the less photoperiod-sensitive cultivar had notable yield gain in the driest regions < 600 mm. The results suggest that, at least for the tested crop types, drought stress might not be the major constraint to sorghum production in isohyets > 600 mm. The findings from this study provide the entry point for further quantitative testing of the Genotype × Environment × Management options required to optimize sorghum production in Mali. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-023-00909-5.

2.
New Phytol ; 241(6): 2435-2447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38214462

RESUMEN

Radiation use efficiency (RUE) is a key crop adaptation trait that quantifies the potential amount of aboveground biomass produced by the crop per unit of solar energy intercepted. But it is unclear why elite maize and grain sorghum hybrids differ in their RUE at the crop level. Here, we used a non-traditional top-down approach via canopy photosynthesis modelling to identify leaf-level photosynthetic traits that are key to differences in crop-level RUE. A novel photosynthetic response measurement was developed and coupled with use of a Bayesian model fitting procedure, incorporating a C4 leaf photosynthesis model, to infer cohesive sets of photosynthetic parameters by simultaneously fitting responses to CO2 , light, and temperature. Statistically significant differences between leaf photosynthetic parameters of elite maize and grain sorghum hybrids were found across a range of leaf temperatures, in particular for effects on the quantum yield of photosynthesis, but also for the maximum enzymatic activity of Rubisco and PEPc. Simulation of diurnal canopy photosynthesis predicted that the leaf-level photosynthetic low-light response and its temperature dependency are key drivers of the performance of crop-level RUE, generating testable hypotheses for further physiological analysis and bioengineering applications.


Asunto(s)
Fotosíntesis , Luz Solar , Temperatura , Teorema de Bayes , Fotosíntesis/fisiología , Hojas de la Planta , Zea mays
3.
J Exp Bot ; 74(16): 4847-4861, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37354091

RESUMEN

We review approaches to maize breeding for improved drought tolerance during flowering and grain filling in the central and western US corn belt and place our findings in the context of results from public breeding. Here we show that after two decades of dedicated breeding efforts, the rate of crop improvement under drought increased from 6.2 g m-2 year-1 to 7.5 g m-2 year-1, closing the genetic gain gap with respect to the 8.6 g m-2 year-1 observed under water-sufficient conditions. The improvement relative to the long-term genetic gain was possible by harnessing favourable alleles for physiological traits available in the reference population of genotypes. Experimentation in managed stress environments that maximized the genetic correlation with target environments was key for breeders to identify and select for these alleles. We also show that the embedding of physiological understanding within genomic selection methods via crop growth models can hasten genetic gain under drought. We estimate a prediction accuracy differential (Δr) above current prediction approaches of ~30% (Δr=0.11, r=0.38), which increases with increasing complexity of the trait environment system as estimated by Shannon information theory. We propose this framework to inform breeding strategies for drought stress across geographies and crops.


Asunto(s)
Resistencia a la Sequía , Zea mays , Zea mays/fisiología , Fitomejoramiento/métodos , Fenotipo , Sequías , Variación Genética , Estrés Fisiológico/genética
4.
Ann Bot ; 131(4): 601-611, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36661105

RESUMEN

BACKGROUND AND AIMS: Main shoot total leaf number (TLN) is a key determinant of plant leaf area and crop adaptation. Environmental factors other than photoperiod can affect TLN in sorghum, implying that leaf appearance rate (LAR) and development rate can differ in response to temperature. The objectives of this study were to determine (1) if temperature effects on TLN can be explained as a consequence of differences in temperature responses across phenological processes and (2) if genotypic differences in these responses can be linked to agroecological adaptation. METHODS: Nineteen sorghum genotypes were sown on 12 dates at two locations in Ethiopia with contrasting altitude, creating temperature differences independent of photoperiod. TLN and temperature were recorded in all experiments and LAR for six sowing dates. KEY RESULTS: Eleven of the genotypes showed a temperature effect on TLN, which was associated with a significantly higher base temperature (Tbase) for LAR than for pre-anthesis development rate (DR). In contrast, genotypes with no effect of temperature on TLN had similar Tbase for LAR and DR. Across genotypes, Tbase for LAR and DR were highly correlated, but genotypes with low Tbase had the greatest difference in Tbase between the two processes. Genotypic differences were associated with racial grouping. CONCLUSIONS: Genotypic and racial differences in responses of phenological processes to temperature, in particular in Tbase, can affect specific adaptation to agroecological zones, as these differences can affect TLN in response to temperature and hence canopy size and the duration of the pre-anthesis period. These can both affect the amount of water used and radiation intercepted pre-anthesis. A multi-disciplinary approach is required to identify genotype × environment × management combinations that can best capture the ensuing specific adaptation.


Asunto(s)
Sorghum , Sorghum/genética , Temperatura , Hojas de la Planta/genética , Aclimatación , Genotipo
5.
Agron Sustain Dev ; 43(1): 15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36714044

RESUMEN

Sorghum is an important food and feed crop in the dry lowland areas of Ethiopia. Farmers grow both early-sown long-duration landraces and late-sown short-duration improved varieties. Because timing and intensity of drought stress can vary in space and time, an understanding of major traits (G), environments (E), management (M), and their interactions (G×E×M) is needed to optimize grain and forage yield given the limited available resources. Crop simulation modeling can provide insights into these complex G×E×M interactions and be used to identify possible avenues for adaptation to prevalent drought patterns in Ethiopia. In a previous study predictive phenology models were developed for a range of Ethiopian germplasm. In this study, the aims were to (1) further parameterize and validate the APSIM-sorghum model for crop growth and yield of Ethiopian germplasm, and (2) quantify by simulation the productivity-risk trade-offs associated with early vs late sowing strategies in the dry lowlands of Ethiopia. Field experiments involving Ethiopian germplasm with contrasting phenology and height were conducted under well-watered (Melkassa) and water-limited (Miesso) conditions and crop development, growth and yield measured. Soil characterization and weather records at the experimental sites, combined with model parameterization, enabled testing of the APSIM-sorghum model, which showed good correspondence between simulated and observed data. The simulated productivity for the Ethiopian dry lowlands environments showed trade-offs between biomass and grain yield for early and late sowing strategies. The late sowing strategy tended to produce less biomass except in poor seasons, whereas it tended to produce greater grain yield except in very good seasons. This study exemplified the systems approach to identifying traits and management options needed to quantify the production-risk trade-offs associated with crop adaptation in the Ethiopian dry lowlands and further exemplifies the general robustness of the sorghum model in APSIM for this task.

6.
Plant Cell Environ ; 46(1): 23-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200623

RESUMEN

Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac ) and electron transport-limited (Aj ) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research.


Asunto(s)
Nitrógeno , Agua , Australia
7.
J Exp Bot ; 73(19): 6711-6726, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35961690

RESUMEN

The stay-green trait is recognized as a key drought adaptation mechanism in cereals worldwide. Stay-green sorghum plants exhibit delayed senescence of leaves and stems, leading to prolonged growth, a reduced risk of lodging, and higher grain yield under end-of-season drought stress. More than 45 quantitative trait loci (QTL) associated with stay-green have been identified, including two major QTL (Stg1 and Stg2). However, the contributing genes that regulate functional stay-green are not known. Here we show that the PIN FORMED family of auxin efflux carrier genes induce some of the causal mechanisms driving the stay-green phenotype in sorghum, with SbPIN4 and SbPIN2 located in Stg1 and Stg2, respectively. We found that nine of 11 sorghum PIN genes aligned with known stay-green QTL. In transgenic studies, we demonstrated that PIN genes located within the Stg1 (SbPIN4), Stg2 (SbPIN2), and Stg3b (SbPIN1) QTL regions acted pleiotropically to modulate canopy development, root architecture, and panicle growth in sorghum, with SbPIN1, SbPIN2, and SbPIN4 differentially expressed in various organs relative to the non-stay-green control. The emergent consequence of such modifications in canopy and root architecture is a stay-green phenotype. Crop simulation modelling shows that the SbPIN2 phenotype can increase grain yield under drought.


Asunto(s)
Sequías , Sorghum , Sitios de Carácter Cuantitativo/genética , Sorghum/fisiología , Fenotipo , Adaptación Fisiológica/genética , Grano Comestible/genética
8.
Theor Appl Genet ; 135(9): 3057-3071, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35933636

RESUMEN

KEY MESSAGE: Leaf width was correlated with plant-level transpiration efficiency and associated with 19 QTL in sorghum, suggesting it could be a surrogate for transpiration efficiency in large breeding program. Enhancing plant transpiration efficiency (TE) by reducing transpiration without compromising photosynthesis and yield is a desirable selection target in crop improvement programs. While narrow individual leaf width has been correlated with greater intrinsic water use efficiency in C4 species, the extent to which this translates to greater plant TE has not been investigated. The aims of this study were to evaluate the correlation of leaf width with TE at the whole-plant scale and investigate the genetic control of leaf width in sorghum. Two lysimetry experiments using 16 genotypes varying for stomatal conductance and three field trials using a large sorghum diversity panel (n = 701 lines) were conducted. Negative associations of leaf width with plant TE were found in the lysimetry experiments, suggesting narrow leaves may result in reduced plant transpiration without trade-offs in biomass accumulation. A wide range in width of the largest leaf was found in the sorghum diversity panel with consistent ranking among sorghum races, suggesting that environmental adaptation may have a role in modifying leaf width. Nineteen QTL were identified by genome-wide association studies on leaf width adjusted for flowering time. The QTL identified showed high levels of correspondence with those in maize and rice, suggesting similarities in the genetic control of leaf width across cereals. Three a priori candidate genes for leaf width, previously found to regulate dorsoventrality, were identified based on a 1-cM threshold. This study provides useful physiological and genetic insights for potential manipulation of leaf width to improve plant adaptation to diverse environments.


Asunto(s)
Sorghum , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Hojas de la Planta/genética , Transpiración de Plantas/genética , Sorghum/genética , Agua/fisiología
9.
Plant Cell Environ ; 45(9): 2554-2572, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35735161

RESUMEN

Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.


Asunto(s)
Estomas de Plantas , Agua , Sequías , Ecosistema , Grano Comestible , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Suelo/química , Agua/fisiología , Xilema/fisiología
10.
Plant Phenomics ; 2022: 9768502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498954

RESUMEN

Sorghum, a genetically diverse C4 cereal, is an ideal model to study natural variation in photosynthetic capacity. Specific leaf nitrogen (SLN) and leaf mass per leaf area (LMA), as well as, maximal rates of Rubisco carboxylation (V cmax), phosphoenolpyruvate (PEP) carboxylation (V pmax), and electron transport (J max), quantified using a C4 photosynthesis model, were evaluated in two field-grown training sets (n = 169 plots including 124 genotypes) in 2019 and 2020. Partial least square regression (PLSR) was used to predict V cmax (R 2 = 0.83), V pmax (R 2 = 0.93), J max (R 2 = 0.76), SLN (R 2 = 0.82), and LMA (R 2 = 0.68) from tractor-based hyperspectral sensing. Further assessments of the capability of the PLSR models for V cmax, V pmax, J max, SLN, and LMA were conducted by extrapolating these models to two trials of genome-wide association studies adjacent to the training sets in 2019 (n = 875 plots including 650 genotypes) and 2020 (n = 912 plots with 634 genotypes). The predicted traits showed medium to high heritability and genome-wide association studies using the predicted values identified four QTL for V cmax and two QTL for J max. Candidate genes within 200 kb of the V cmax QTL were involved in nitrogen storage, which is closely associated with Rubisco, while not directly associated with Rubisco activity per se. J max QTL was enriched for candidate genes involved in electron transport. These outcomes suggest the methods here are of great promise to effectively screen large germplasm collections for enhanced photosynthetic capacity.

11.
J Exp Bot ; 73(16): 5503-5513, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35640591

RESUMEN

In the absence of stress, crop growth depends on the amount of light intercepted by the canopy and the conversion efficiency [radiation use efficiency (RUE)]. This study tested the hypothesis that long-term genetic gain for grain yield was partly due to improved RUE. The hypothesis was tested using 30 elite maize hybrids commercialized in the US corn belt between 1930 and 2017. Crops grown under irrigation showed that pre-flowering crop growth increased at a rate of 0.11 g m-2 year-1, while light interception remained constant. Therefore, RUE increased at a rate of 0.0049 g MJ-1 year-1, translating into an average of 3 g m-2 year-1 of grain yield over 100 years of maize breeding. Considering that the harvest index has not changed for crops grown at optimal density for the hybrid, the cumulative RUE increase over the history of commercial maize breeding in the USA can account for ~32% of the documented yield trend for maize grown in the central US corn belt. The remaining RUE gap between this study and theoretical maximum values suggests that a yield improvement of a similar magnitude could be achieved by further increasing RUE.


Asunto(s)
Fitomejoramiento , Zea mays , Productos Agrícolas/genética , Zea mays/genética
12.
J Exp Bot ; 73(3): 801-816, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34698817

RESUMEN

Developing sorghum genotypes adapted to different light environments requires understanding of a plant's ability to capture light, determined through leaf angle specifically. This study dissected the genetic basis of leaf angle in 3 year field trials at two sites, using a sorghum diversity panel (729 accessions). A wide range of variation in leaf angle with medium heritability was observed. Leaf angle explained 36% variation in canopy light extinction coefficient, highlighting the extent to which variation in leaf angle influences light interception at the whole-canopy level. This study also found that the sorghum races of Guinea and Durra consistently having the largest and smallest leaf angle, respectively, highlighting the potential role of leaf angle in adaptation to distinct environments. The genome-wide association study detected 33 quantitative trait loci (QTLs) associated with leaf angle. Strong synteny was observed with previously detected leaf angle QTLs in maize (70%) and rice (40%) within 10 cM, among which the overlap was significantly enriched according to χ2 tests, suggesting a highly consistent genetic control in grasses. A priori leaf angle candidate genes identified in maize and rice were found to be enriched within a 1-cM window around the sorghum leaf angle QTLs. Additionally, protein domain analysis identified the WD40 protein domain as being enriched within a 1-cM window around the QTLs. These outcomes show that there is sufficient heritability and natural variation in the angle of upper leaves in sorghum which may be exploited to change light interception and optimize crop canopies for different contexts.


Asunto(s)
Sorghum , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo/genética , Sorghum/genética
13.
Plant Phenomics ; 2021: 9874650, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34676373

RESUMEN

In plant breeding, unmanned aerial vehicles (UAVs) carrying multispectral cameras have demonstrated increasing utility for high-throughput phenotyping (HTP) to aid the interpretation of genotype and environment effects on morphological, biochemical, and physiological traits. A key constraint remains the reduced resolution and quality extracted from "stitched" mosaics generated from UAV missions across large areas. This can be addressed by generating high-quality reflectance data from a single nadir image per plot. In this study, a pipeline was developed to derive reflectance data from raw multispectral UAV images that preserve the original high spatial and spectral resolutions and to use these for phenotyping applications. Sequential steps involved (i) imagery calibration, (ii) spectral band alignment, (iii) backward calculation, (iv) plot segmentation, and (v) application. Each step was designed and optimised to estimate the number of plants and count sorghum heads within each breeding plot. Using a derived nadir image of each plot, the coefficients of determination were 0.90 and 0.86 for estimates of the number of sorghum plants and heads, respectively. Furthermore, the reflectance information acquired from the different spectral bands showed appreciably high discriminative ability for sorghum head colours (i.e., red and white). Deployment of this pipeline allowed accurate segmentation of crop organs at the canopy level across many diverse field plots with minimal training needed from machine learning approaches.

14.
Theor Appl Genet ; 134(12): 3997-4011, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34448888

RESUMEN

KEY MESSAGE: Convolutional Neural Networks (CNNs) can perform similarly or better than standard genomic prediction methods when sufficient genetic, environmental, and management data are provided. Predicting phenotypes from genetic (G), environmental (E), and management (M) conditions is a long-standing challenge with implications to agriculture, medicine, and conservation. Most methods reduce the factors in a dataset (feature engineering) in a subjective and potentially oversimplified manner. Deep neural networks such as Multilayer Perceptrons (MPL) and Convolutional Neural Networks (CNN) can overcome this by allowing the data itself to determine which factors are most important. CNN models were developed for predicting agronomic yield from a combination of replicated trials and historical yield survey data. The results were more accurate than standard methods when tested on held-out G, E, and M data (r = 0.50 vs. r = 0.43), and performed slightly worse than standard methods when only G was held out (r = 0.74 vs. r = 0.80). Pre-training on historical data increased accuracy compared to trial data alone. Saliency map analysis indicated the CNN has "learned" to prioritize many factors of known agricultural importance.


Asunto(s)
Productos Agrícolas/genética , Genómica/métodos , Redes Neurales de la Computación , Fenotipo , Productos Agrícolas/crecimiento & desarrollo , Minería de Datos , Aprendizaje Automático , Zea mays/crecimiento & desarrollo
15.
J Exp Bot ; 72(14): 5097-5101, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245562
16.
Front Plant Sci ; 12: 663565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149761

RESUMEN

Genomic prediction of complex traits across environments, breeding cycles, and populations remains a challenge for plant breeding. A potential explanation for this is that underlying non-additive genetic (GxG) and genotype-by-environment (GxE) interactions generate allele substitution effects that are non-stationary across different contexts. Such non-stationary effects of alleles are either ignored or assumed to be implicitly captured by most gene-to-phenotype (G2P) maps used in genomic prediction. The implicit capture of non-stationary effects of alleles requires the G2P map to be re-estimated across different contexts. We discuss the development and application of hierarchical G2P maps that explicitly capture non-stationary effects of alleles and have successfully increased short-term prediction accuracy in plant breeding. These hierarchical G2P maps achieve increases in prediction accuracy by allowing intermediate processes such as other traits and environmental factors and their interactions to contribute to complex trait variation. However, long-term prediction remains a challenge. The plant breeding community should undertake complementary simulation and empirical experiments to interrogate various hierarchical G2P maps that connect GxG and GxE interactions simultaneously. The existing genetic correlation framework can be used to assess the magnitude of non-stationary effects of alleles and the predictive ability of these hierarchical G2P maps in long-term, multi-context genomic predictions of complex traits in plant breeding.

17.
J Exp Bot ; 72(14): 5235-5245, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34037765

RESUMEN

Because plants capture water and nutrients through roots, it was proposed that changes in root systems architecture (RSA) might underpin the 3-fold increase in maize (Zea mays L.) grain yield over the last century. Here we show that both RSA and yield have changed with decades of maize breeding, but not the crop water uptake. Results from X-ray phenotyping in controlled environments showed that single cross (SX) hybrids have smaller root systems than double cross (DX) hybrids for root diameters between 2465 µm and 181µm (P<0.05). Soil water extraction measured under field conditions ranged between 2.6 mm d-1 and 2.9 mm d-1 but were not significantly different between SX and DX hybrids. Yield and yield components were higher for SX than DX hybrids across densities and irrigation (P<0.001). Taken together, the results suggest that changes in RSA were not the cause of increased water uptake but an adaptation to high-density stands used in modern agriculture. This adaptation may have contributed to shift in resource allocation to the ear and indirectly improved reproductive resilience. Advances in root physiology and phenotyping can create opportunities to maintain long-term genetic gain in maize, but a shift from ideotype to crop and production system thinking will be required.


Asunto(s)
Sequías , Zea mays , Agricultura , Fitomejoramiento , Suelo , Agua , Zea mays/genética
18.
J Exp Bot ; 72(14): 5158-5179, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34021317

RESUMEN

The CGIAR crop improvement (CI) programs, unlike commercial CI programs, which are mainly geared to profit though meeting farmers' needs, are charged with meeting multiple objectives with target populations that include both farmers and the community at large. We compiled the opinions from >30 experts in the private and public sector on key strategies, methodologies, and activities that could the help CGIAR meet the challenges of providing farmers with improved varieties while simultaneously meeting the goals of: (i) nutrition, health, and food security; (ii) poverty reduction, livelihoods, and jobs; (iii) gender equality, youth, and inclusion; (iv) climate adaptation and mitigation; and (v) environmental health and biodiversity. We review the crop improvement processes starting with crop choice, moving through to breeding objectives, production of potential new varieties, selection, and finally adoption by farmers. The importance of multidisciplinary teams working towards common objectives is stressed as a key factor to success. The role of the distinct disciplines, actors, and their interactions throughout the process from crop choice through to adoption by farmers is discussed and illustrated.


Asunto(s)
Agricultura , Agricultores , Humanos
19.
Trends Plant Sci ; 26(6): 607-630, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33893046

RESUMEN

Asymmetry of investment in crop research leads to knowledge gaps and lost opportunities to accelerate genetic gain through identifying new sources and combinations of traits and alleles. On the basis of consultation with scientists from most major seed companies, we identified several research areas with three common features: (i) relatively underrepresented in the literature; (ii) high probability of boosting productivity in a wide range of crops and environments; and (iii) could be researched in 'precompetitive' space, leveraging previous knowledge, and thereby improving models that guide crop breeding and management decisions. Areas identified included research into hormones, recombination, respiration, roots, and source-sink, which, along with new opportunities in phenomics, genomics, and bioinformatics, make it more feasible to explore crop genetic resources and improve breeding strategies.


Asunto(s)
Producción de Cultivos , Fitomejoramiento , Productos Agrícolas/genética , Genómica , Fenotipo
20.
Theor Appl Genet ; 134(6): 1625-1644, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33738512

RESUMEN

KEY MESSAGE: Climate change and Genotype-by-Environment-by-Management interactions together challenge our strategies for crop improvement. Research to advance prediction methods for breeding and agronomy is opening new opportunities to tackle these challenges and overcome on-farm crop productivity yield-gaps through design of responsive crop improvement strategies. Genotype-by-Environment-by-Management (G × E × M) interactions underpin many aspects of crop productivity. An important question for crop improvement is "How can breeders and agronomists effectively explore the diverse opportunities within the high dimensionality of the complex G × E × M factorial to achieve sustainable improvements in crop productivity?" Whenever G × E × M interactions make important contributions to attainment of crop productivity, we should consider how to design crop improvement strategies that can explore the potential space of G × E × M possibilities, reveal the interesting Genotype-Management (G-M) technology opportunities for the Target Population of Environments (TPE), and enable the practical exploitation of the associated improved levels of crop productivity under on-farm conditions. Climate change adds additional layers of complexity and uncertainty to this challenge, by introducing directional changes in the environmental dimension of the G × E × M factorial. These directional changes have the potential to create further conditional changes in the contributions of the genetic and management dimensions to future crop productivity. Therefore, in the presence of G × E × M interactions and climate change, the challenge for both breeders and agronomists is to co-design new G-M technologies for a non-stationary TPE. Understanding these conditional changes in crop productivity through the relevant sciences for each dimension, Genotype, Environment, and Management, creates opportunities to predict novel G-M technology combinations suitable to achieve sustainable crop productivity and global food security targets for the likely climate change scenarios. Here we consider critical foundations required for any prediction framework that aims to move us from the current unprepared state of describing G × E × M outcomes to a future responsive state equipped to predict the crop productivity consequences of G-M technology combinations for the range of environmental conditions expected for a complex, non-stationary TPE under the influences of climate change.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/genética , Interacción Gen-Ambiente , Fitomejoramiento , Cambio Climático , Granjas , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...