Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39209164

RESUMEN

BACKGROUND: Investigating the contributory role that epithelial cell metabolism plays in allergic inflammation is a key factor to understanding what influences dysfunction and the pathogenesis of the allergic disease eosinophilic esophagitis (EoE). We previously highlighted that the absence of hypoxia signaling through hypoxia-inducible factor (HIF)-1α in EoE contributes to esophageal epithelial dysfunction. However, metabolic regulation by HIF-1α has not been explored in esophageal allergy. OBJECTIVES: We sought to define the role of HIF-1α-mediated metabolic dysfunction in esophageal epithelial differentiation processes and barrier function in EoE. METHODS: In RNA sequencing of EoE patient biopsy samples, we observed the expression pattern of key genes involved in mitochondrial metabolism/oxidative phosphorylation (OXPHOS) and glycolysis. Seahorse bioenergetics analysis was performed on EPC2-hTERT cells to decipher the metabolic processes involved in epithelial differentiation processes. In addition, air-liquid interface cultures were used to delineate metabolic dependency mechanisms required for epithelial differentiation. RESULTS: Transcriptomic analysis identified an increase in genes associated with OXPHOS in patients with EoE. Epithelial origin of this signature was confirmed by complex V immunofluorescence of patient biopsy samples. Bioenergetic analysis in vitro revealed that differentiated epithelium was less reliant on OXPHOS compared with undifferentiated epithelium. Increased OXPHOS potential and reduced glycolytic capacity was mirrored in HIF1A-knockdown EPC2-hTERT cells that exhibited a significant absence of terminal markers of epithelial differentiation, including involucrin. Pharmacologic glucose transport inhibition phenocopied this, while rescue of the HIF-1α-deficient phenotype using the pan-prolyl hydroxylase inhibitor dimethyloxalylglycine resulted in restored expression of epithelial differentiation markers. CONCLUSIONS: An OXPHOS-dominated metabolic pattern in EoE patients, brought about largely by the absence of HIF-1α-mediated glycolysis, is linked with the deficit in esophageal epithelial differentiation.

2.
J Clin Invest ; 129(8): 3224-3235, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31264974

RESUMEN

Epithelial barrier dysfunction is a significant factor in many allergic diseases, including eosinophilic esophagitis (EoE). Infiltrating leukocytes and tissue adaptations increase metabolic demands and decrease oxygen availability at barrier surfaces. Understanding of how these processes impact barrier is limited, particularly in allergy. Here, we identified a regulatory axis whereby the oxygen-sensing transcription factor HIF-1α orchestrated epithelial barrier integrity, selectively controlling tight junction CLDN1 (claudin-1). Prolonged experimental hypoxia or HIF1A knockdown suppressed HIF-1α-dependent claudin-1 expression and epithelial barrier function, as documented in 3D organotypic epithelial cultures. L2-IL5OXA mice with EoE-relevant allergic inflammation displayed localized eosinophil oxygen metabolism, tissue hypoxia, and impaired claudin-1 barrier via repression of HIF-1α/claudin-1 signaling, which was restored by transgenic expression of esophageal epithelial-targeted stabilized HIF-1α. EoE patient biopsy analysis identified a repressed HIF-1α/claudin-1 axis, which was restored via pharmacologic HIF-1α stabilization ex vivo. Collectively, these studies reveal HIF-1α's critical role in maintaining barrier and highlight the HIF-1α/claudin-1 axis as a potential therapeutic target for EoE.


Asunto(s)
Claudina-1/metabolismo , Esofagitis Eosinofílica/metabolismo , Células Epiteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transducción de Señal , Uniones Estrechas/metabolismo , Adolescente , Adulto , Animales , Línea Celular Transformada , Niño , Preescolar , Claudina-1/genética , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/patología , Células Epiteliales/patología , Femenino , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Transgénicos , Estabilidad Proteica , Uniones Estrechas/genética , Uniones Estrechas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA