Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Rev Immunol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658708

RESUMEN

Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics.

2.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873468

RESUMEN

Allogeneic cell therapies hold promise for broad clinical implementation, but face limitations due to potential rejection by the recipient immune system. Silencing of beta-2-microglobulin ( B2M ) expression is commonly employed to evade T cell-mediated rejection, although absence of B2M triggers missing-self responses by recipient natural killer (NK) cells. Here, we demonstrate that deletion of the adhesion ligands CD54 and CD58 on targets cells robustly dampens NK cell reactivity across all sub-populations. Genetic deletion of CD54 and CD58 in B2M -deficient allogeneic chimeric antigen receptor (CAR) T and multi-edited induced pluripotent stem cell (iPSC)-derived NK cells reduces their susceptibility to rejection by NK cells in vitro and in vivo without affecting their anti-tumor effector potential. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection of allogeneic immune cells for immunotherapy.

3.
Eur J Immunol ; 53(11): e2350465, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37526136

RESUMEN

Natural killer (NK) cells are innate lymphocytes that participate in immune responses against virus-infected cells and tumors. As a countermeasure, viruses and tumors employ strategies to evade NK-cell-mediated immunosurveillance. In this review, we examine immune evasion strategies employed by viruses, focusing on examples from human CMV and severe acute respiratory syndrome coronavirus 2. We explore selected viral evasion mechanisms categorized into three classes: (1) providing ligands for the inhibitory receptor NKG2A, (2) downregulating ligands for the activating receptor NKG2D, and (3) inducing the immunosuppressive cytokine transforming growth factor (TGF)-ß. For each class, we draw parallels between immune evasion by viruses and tumors, reviewing potential opportunities for overcoming evasion in cancer therapy. We suggest that in-depth investigations of host-pathogen interactions between viruses and NK cells will not only deepen our understanding of viral immune evasion but also shed light on how NK cells counter such evasion attempts. Thus, due to the parallels of immune evasion by viruses and tumors, we propose that insights gained from antiviral NK-cell responses may serve as valuable lessons that can be leveraged for designing future cancer immunotherapies.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Humanos , Monitorización Inmunológica , Evasión Inmune , Neoplasias/terapia , Neoplasias/metabolismo , Inmunoterapia
4.
Blood Adv ; 7(16): 4492-4504, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37327114

RESUMEN

The functionality of natural killer (NK) cells is tuned during education and is associated with remodeling of the lysosomal compartment. We hypothesized that genetic variation in killer cell immunoglobulin-like receptor (KIR) and HLA, which is known to influence the functional strength of NK cells, fine-tunes the payload of effector molecules stored in secretory lysosomes. To address this possibility, we performed a high-resolution analysis of KIR and HLA class I genes in 365 blood donors and linked genotypes to granzyme B loading and functional phenotypes. We found that granzyme B levels varied across individuals but were stable over time in each individual and genetically determined by allelic variation in HLA class I genes. A broad mapping of surface receptors and lysosomal effector molecules revealed that DNAM-1 and granzyme B levels served as robust metric of the functional state in NK cells. Variation in granzyme B levels at rest was tightly linked to the lytic hit and downstream killing of major histocompatibility complex-deficient target cells. Together, these data provide insights into how variation in genetically hardwired receptor pairs tunes the releasable granzyme B pool in NK cells, resulting in predictable hierarchies in global NK cell function.


Asunto(s)
Células Asesinas Naturales , Receptores KIR , Granzimas/genética , Granzimas/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Genotipo
5.
J Leukoc Biol ; 114(5): 507-512, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36976012

RESUMEN

Natural killer cells participate in the host innate immune response to viral infection. Conversely, natural killer cell dysfunction and hyperactivation can contribute to tissue damage and immunopathology. Here, we review recent studies with respect to natural killer cell activity during infection with SARS-CoV-2. Discussed are initial reports of patients hospitalized with COVID-19, which revealed prompt natural killer cell activation during the acute disease state. Another hallmark of COVID-19, early on observed, was a decrease in numbers of natural killer cells in the circulation. Data from patients with acute SARS-CoV-2 infection as well as from in vitro models demonstrated strong anti-SARS-CoV-2 activity by natural killer cells, likely through direct cytotoxicity as well as indirectly by secreting cytokines. Additionally, we describe the molecular mechanisms underlying natural killer cell recognition of SARS-CoV-2-infected cells, which involve triggering of multiple activating receptors, including NKG2D, as well as loss of inhibition through NKG2A. Discussed is also the ability of natural killer cells to respond to SARS-CoV-2 infection via antibody-dependent cellular cytotoxicity. With respect to natural killer cells in the pathogenesis of COVID-19, we review studies demonstrating how hyperactivation and misdirected NK cell responses could contribute to disease course. Finally, while knowledge is still rather limited, we discuss current insights suggesting a contribution of an early natural killer cell activation response in the generation of immunity against SARS-CoV-2 following vaccination with anti-SARS-CoV-2 mRNA vaccines.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Células Asesinas Naturales , Citocinas , Vacunación
6.
Curr Protoc ; 2(11): e613, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36440989

RESUMEN

Studying gene functions in human natural killer (NK) cells is key for advancing the understanding of NK cell biology and holds promise to pave the way for improving NK cell therapies against cancer. However, NK cells are challenging to manipulate, and investigation of gene functions in NK cells is hampered by variable delivery efficiencies and impaired viability upon electroporation, lipofection, or viral transduction. Here, we report a simple workflow for delivery of commercially available small interfering RNA molecules into primary human NK cells to enable functional gene analyses. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Enrichment of natural killer cells from human peripheral blood mononuclear cells Basic Protocol 2: Preparation of small interfering RNA Basic Protocol 3: Delivery of small interfering RNA into natural killer cells Support Protocol 1: Isolation of human peripheral blood mononuclear cells from buffy coats Support Protocol 2: Thawing and recovery of cryopreserved peripheral blood mononuclear cells Support Protocol 3: Evaluation of natural killer cell purity following magnetic enrichment Support Protocol 4: Exemplary assessment of knockdown efficiency.


Asunto(s)
Células Asesinas Naturales , Leucocitos Mononucleares , Humanos , ARN Interferente Pequeño/genética , Inmunoterapia Adoptiva , Electroporación
7.
J Immunother Cancer ; 10(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36319065

RESUMEN

BACKGROUND: Natural killer (NK) cells hold great promise as a source for allogeneic cell therapy against hematological malignancies, including acute myeloid leukemia (AML). Current treatments are hampered by variability in NK cell subset responses, a limitation which could be circumvented by specific expansion of highly potent single killer immunoglobulin-like receptor (KIR)+NKG2C+ adaptive NK cells to maximize missing-self reactivity. METHODS: We developed a GMP-compliant protocol to expand adaptive NK cells from cryopreserved cells derived from select third-party superdonors, that is, donors harboring large adaptive NK cell subsets with desired KIR specificities at baseline. We studied the adaptive state of the cell product (ADAPT-NK) by flow cytometry and mass cytometry as well as cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq). We investigated the functional responses of ADAPT-NK cells against a wide range of tumor target cell lines and primary AML samples using flow cytometry and IncuCyte as well as in a mouse model of AML. RESULTS: ADAPT-NK cells were >90% pure with a homogeneous expression of a single self-HLA specific KIR and expanded a median of 470-fold. The ADAPT-NK cells largely retained their adaptive transcriptional signature with activation of effector programs without signs of exhaustion. ADAPT-NK cells showed high degranulation capacity and efficient killing of HLA-C/KIR mismatched tumor cell lines as well as primary leukemic blasts from AML patients. Finally, the expanded adaptive NK cells had preserved robust antibody-dependent cellular cytotoxicity potential and combination of ADAPT-NK cells with an anti-CD16/IL-15/anti-CD33 tri-specific engager led to near-complete killing of resistant CD45dim blast subtypes. CONCLUSIONS: These preclinical data demonstrate the feasibility of off-the-shelf therapy with a non-engineered, yet highly specific, NK cell population with full missing-self recognition capability.


Asunto(s)
Citotoxicidad Inmunológica , Leucemia Mieloide Aguda , Animales , Ratones , Citotoxicidad Celular Dependiente de Anticuerpos , Células Asesinas Naturales/metabolismo , Leucemia Mieloide Aguda/patología , Receptores KIR/metabolismo
8.
Eur J Immunol ; 52(7): 1190-1193, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35416292

RESUMEN

The molecular networks that regulate natural killer (NK) cell functions are not completely understood. Here, we present a workflow for efficient delivery of siRNA into human NK cells without compromising viability. This methodology represents a promising approach for rapidly interrogating gene functions in primary human NK cells.


Asunto(s)
Células Asesinas Naturales , Humanos , ARN Interferente Pequeño/genética
9.
Cell Rep ; 38(10): 110503, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235832

RESUMEN

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.


Asunto(s)
COVID-19 , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Metiltransferasas , Subfamília C de Receptores Similares a Lectina de Células NK , ARN Helicasas , SARS-CoV-2 , Proteínas no Estructurales Virales , COVID-19/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Células Asesinas Naturales/inmunología , Metiltransferasas/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Péptidos/metabolismo , ARN Helicasas/inmunología , Proteínas no Estructurales Virales/inmunología , Antígenos HLA-E
10.
Mol Med ; 28(1): 20, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135470

RESUMEN

Adaptive immune responses have been studied extensively in the course of mRNA vaccination against COVID-19. Considerably fewer studies have assessed the effects on innate immune cells. Here, we characterized NK cells in healthy individuals and immunocompromised patients in the course of an anti-SARS-CoV-2 BNT162b2 mRNA prospective, open-label clinical vaccine trial. See trial registration description in notes. Results revealed preserved NK cell numbers, frequencies, subsets, phenotypes, and function as assessed through consecutive peripheral blood samplings at 0, 10, 21, and 35 days following vaccination. A positive correlation was observed between the frequency of NKG2C+ NK cells at baseline (Day 0) and anti-SARS-CoV-2 Ab titers following BNT162b2 mRNA vaccination at Day 35. The present results provide basic insights in regards to NK cells in the context of mRNA vaccination, and have relevance for future mRNA-based vaccinations against COVID-19, other viral infections, and cancer.Trial registration: The current study is based on clinical material from the COVAXID open-label, non-randomized prospective clinical trial registered at EudraCT and clinicaltrials.gov (no. 2021-000175-37). Description: https://clinicaltrials.gov/ct2/show/NCT04780659?term=2021-000175-37&draw=2&rank=1 .


Asunto(s)
Vacuna BNT162/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Huésped Inmunocomprometido/inmunología , Células Asesinas Naturales/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Citometría de Flujo , Humanos , Células Asesinas Naturales/metabolismo , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Pandemias/prevención & control , SARS-CoV-2/fisiología , Vacunación/métodos , Vacunación/estadística & datos numéricos , Adulto Joven
11.
mBio ; 12(2)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727352

RESUMEN

Human cytomegalovirus (HCMV) may cause severe infections in lung transplant recipients (LTRs). In response to HCMV infections, a subset of NKG2C+ NK cells expands, which limits HCMV replication and is characterized by high expression of the activating NKG2C/CD94 and absence of the inhibitory NKG2A/CD94 receptor. Both receptors bind to HLA-E, which is stabilized by HCMV-encoded UL40 peptides. HLA-E and UL40 occur as different genetic variants. In this study, we investigated the interplay between the human NK cell response and the infecting HCMV-UL40 strain, and we assessed the impact of HCMV-UL40 and of donor- and recipient-encoded HLA-E*0101/0103 variants on HCMV replication after lung transplantation. We included 137 LTRs displaying either no or low- or high-level (>1,000 copies/ml plasma) viremia. HCMV-UL40 and HLA-E*0101/0103 variants were determined. UL40 diversity was investigated by next-generation sequencing. UL40 peptide-dependent NK cell cytotoxicity was assessed by flow cytometry. Donor-encoded HLA-E*0101/0103 was significantly associated with development of high-level viremia after transplantation (P = 0.007). The HCMV-UL40 variant VMAPRTLIL occurred significantly more frequently in highly viremic LTRs, and the variant VMTPRTLIL occurred significantly more frequently in low-viremic LTRs (P = 0.004). This difference was associated with a better inhibition of NKG2A+ NKG2C- NK cells by VMAPRTLIL (P < 0.001). In LTRs with repeated high-level viremic episodes, HCMV strains with UL40 variants displaying low affinity to the patients' HLA-E variant emerged over time. The HLA-E-UL40 axis has a substantial impact on the level of HCMV replication in LTRs. The interplay between UL40 peptide variants, the recipient HLA-E status, and the activation of inhibitory NKG2A+ NKG2C- cells is of major importance for development of high-level viremia after lung transplantation.IMPORTANCE Infection with human cytomegalovirus (HCMV) is associated with substantial morbidity in immunosuppressed patients and after congenital infections. Therefore, development of a vaccine against HCMV is a main public health priority. Revealing the complex interaction between HCMV and host responses, is of utmost importance for understanding viral pathogenesis and for vaccine design. The present data contribute to the understanding of HCMV-specific host immune responses and reveal specifically the interaction between HLA-E and the virus-encoded UL40 peptide, which further leads to a potent NK cell response. We demonstrate that this interaction is a key factor for reduction of virus replication in immunosuppressed patients. We further show that distinct naturally occurring HCMV-UL40 variants reduce the activation of a specific subpopulation of host NK cells and thereby are associated with high-level viremia in the patients. These findings will allow the characterization of patients at risk for severe HCMV infection and contribute to strategies for HCMV vaccine development.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/genética , Citomegalovirus/fisiología , Antígenos de Histocompatibilidad Clase I/genética , Interacciones Microbiota-Huesped/genética , Células Asesinas Naturales/inmunología , Proteínas Virales/genética , Replicación Viral/genética , Adulto , Anciano , Estudios de Cohortes , Citomegalovirus/clasificación , Femenino , Variación Genética , Antígenos de Histocompatibilidad Clase I/clasificación , Humanos , Trasplante de Pulmón/efectos adversos , Masculino , Persona de Mediana Edad , Receptores de Trasplantes/estadística & datos numéricos , Viremia , Adulto Joven , Antígenos HLA-E
12.
Sci Immunol ; 5(50)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826343

RESUMEN

Understanding innate immune responses in COVID-19 is important to decipher mechanisms of host responses and interpret disease pathogenesis. Natural killer (NK) cells are innate effector lymphocytes that respond to acute viral infections but might also contribute to immunopathology. Using 28-color flow cytometry, we here reveal strong NK cell activation across distinct subsets in peripheral blood of COVID-19 patients. This pattern was mirrored in scRNA-seq signatures of NK cells in bronchoalveolar lavage from COVID-19 patients. Unsupervised high-dimensional analysis of peripheral blood NK cells furthermore identified distinct NK cell immunotypes that were linked to disease severity. Hallmarks of these immunotypes were high expression of perforin, NKG2C, and Ksp37, reflecting increased presence of adaptive NK cells in circulation of patients with severe disease. Finally, arming of CD56bright NK cells was observed across COVID-19 disease states, driven by a defined protein-protein interaction network of inflammatory soluble factors. This study provides a detailed map of the NK cell activation landscape in COVID-19 disease.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/inmunología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Células Asesinas Naturales/inmunología , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Índice de Severidad de la Enfermedad , Inmunidad Adaptativa , Antígeno CD56/metabolismo , COVID-19 , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Femenino , Citometría de Flujo/métodos , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , Fenotipo , Neumonía Viral/sangre , Neumonía Viral/patología , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Mapas de Interacción de Proteínas/inmunología , Receptores KIR/metabolismo , SARS-CoV-2 , Pruebas Serológicas , Suecia/epidemiología
13.
Sci Immunol ; 5(49)2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620560

RESUMEN

CD8+ T cell exhaustion is a hallmark of many cancers and chronic infections. In mice, T cell factor 1 (TCF-1) maintains exhausted CD8+ T cell responses, whereas thymocyte selection-associated HMG box (TOX) is required for the epigenetic remodeling and survival of exhausted CD8+ T cells. However, it has remained unclear to what extent these transcription factors play analogous roles in humans. In this study, we mapped the expression of TOX and TCF-1 as a function of differentiation and specificity in the human CD8+ T cell landscape. Here, we demonstrate that circulating TOX+ CD8+ T cells exist in most humans, but that TOX is not exclusively associated with exhaustion. Effector memory CD8+ T cells generally expressed TOX, whereas naive and early-differentiated memory CD8+ T cells generally expressed TCF-1. Cytolytic gene and protein expression signatures were also defined by the expression of TOX. In the context of a relentless immune challenge, exhausted HIV-specific CD8+ T cells commonly expressed TOX, often in clusters with various activation markers and inhibitory receptors, and expressed less TCF-1. However, polyfunctional memory CD8+ T cells specific for cytomegalovirus (CMV) or Epstein-Barr virus (EBV) also expressed TOX, either with or without TCF-1. A similar phenotype was observed among HIV-specific CD8+ T cells from individuals who maintained exceptional immune control of viral replication. Collectively, these data demonstrate that TOX is expressed by most circulating effector memory CD8+ T cell subsets and not exclusively linked to exhaustion.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proteínas del Grupo de Alta Movilidad/inmunología , Células T de Memoria/inmunología , Antígenos Virales/inmunología , Enfermedad Crónica , Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Factor 1 de Transcripción de Linfocitos T/genética , Factor 1 de Transcripción de Linfocitos T/inmunología , Virosis/inmunología , Virus/inmunología
14.
J Exp Med ; 217(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32453422

RESUMEN

NKG2D is a danger sensor expressed on different subsets of innate and adaptive lymphocytes. Despite its established role as a potent activator of the immune system, NKG2D-driven regulation of CD4+ T helper (Th) cell-mediated immunity remains unclear. In this study, we demonstrate that NKG2D modulates Th1 and proinflammatory T-bet+ Th17 cell effector functions in vitro and in vivo. In particular, NKG2D promotes higher production of proinflammatory cytokines by Th1 and T-bet+ Th17 cells and reinforces their transcription of type 1 signature genes, including Tbx21. Conditional deletion of NKG2D in T cells impairs the ability of antigen-specific CD4+ T cells to promote inflammation in vivo during antigen-induced arthritis and experimental autoimmune encephalomyelitis, indicating that NKG2D is an important target for the amelioration of Th1- and Th17-mediated chronic inflammatory diseases.


Asunto(s)
Artritis Experimental/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Artritis Experimental/genética , Artritis Experimental/patología , Citocinas/genética , Citocinas/inmunología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Noqueados , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/inmunología , Células TH1/patología , Células Th17/patología
15.
Nat Commun ; 10(1): 514, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705279

RESUMEN

Inhibitory signaling during natural killer (NK) cell education translates into increased responsiveness to activation; however, the intracellular mechanism for functional tuning by inhibitory receptors remains unclear. Secretory lysosomes are part of the acidic lysosomal compartment that mediates intracellular signalling in several cell types. Here we show that educated NK cells expressing self-MHC specific inhibitory killer cell immunoglobulin-like receptors (KIR) accumulate granzyme B in dense-core secretory lysosomes that converge close to the centrosome. This discrete morphological phenotype is independent of transcriptional programs that regulate effector function, metabolism and lysosomal biogenesis. Meanwhile, interference of signaling from acidic Ca2+ stores in primary NK cells reduces target-specific Ca2+-flux, degranulation and cytokine production. Furthermore, inhibition of PI(3,5)P2 synthesis, or genetic silencing of the PI(3,5)P2-regulated lysosomal Ca2+-channel TRPML1, leads to increased granzyme B and enhanced functional potential, thereby mimicking the educated state. These results indicate an intrinsic role for lysosomal remodeling in NK cell education.


Asunto(s)
Células Asesinas Naturales/metabolismo , Lisosomas/metabolismo , Aminopiridinas/farmacología , Animales , Granzimas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Células K562 , Células Asesinas Naturales/efectos de los fármacos , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Ratones , Receptores KIR/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
16.
Semin Immunopathol ; 41(1): 59-68, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30361801

RESUMEN

Cell therapy is emerging as a very promising therapeutic modality against cancer, spearheaded by the clinical success of chimeric antigen receptor (CAR) modified T cells for B cell malignancies. Currently, FDA-approved CAR-T cell products are based on engineering of autologous T cells harvested from the patient, typically using a central manufacturing facility for gene editing before the product can be delivered to the clinic and infused to the patients. For a broader implementation of advanced cell therapy and to reduce costs, it would be advantageous to use allogeneic "universal" cell therapy products that can be stored in cell banks and provided upon request, in a manner analogous to biopharmaceutical drug products. In this review, we outline a roadmap for development of off-the-shelf cell therapy based on natural killer (NK) cells derived from induced pluripotent stem cells (iPSCs). We discuss strategies to engineer iPSC-derived NK (iPSC-NK) cells for enhanced functional potential, persistence, and homing.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Pluripotentes Inducidas/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Animales , Movimiento Celular/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Citotoxicidad Inmunológica , Ingeniería Genética , Humanos , Inmunoterapia Adoptiva/métodos , Células Madre Pluripotentes Inducidas/citología , Células Asesinas Naturales/citología , Neoplasias/genética , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología
17.
Sci Immunol ; 3(29)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389798

RESUMEN

Natural killer (NK) cells recognize and eliminate infected and malignant cells. Their life histories are poorly understood, particularly in humans, due to lack of informative models and endogenous clonal markers. Here, we apply transplantation of barcoded rhesus macaque hematopoietic cells to interrogate the landscape of NK cell production, expansion, and life histories at a clonal level long term and after proliferative challenge. We identify oligoclonal populations of rhesus CD56-CD16+ NK cells that are characterized by marked expansions and contractions over time yet remained long-term clonally uncoupled from other hematopoietic lineages, including CD56+CD16- NK cells. Individual or groups of CD56-CD16+ expanded clones segregated with surface expression of specific killer immunoglobulin-like receptors. These clonally distinct NK cell subpopulation patterns persisted for more than 4 years, including after transient in vivo anti-CD16-mediated depletion and subsequent regeneration. Profound and sustained interleukin-15-mediated depletion was required to generate new oligoclonal CD56-CD16+ NK cells. Together, our results indicate that linear NK cell production from multipotent hematopoietic progenitors or less mature CD56+CD16- cells is negligible during homeostasis and moderate proliferative stress. In such settings, peripheral compartmentalized self-renewal can maintain the composition of distinct, differentiated NK cell subpopulations.


Asunto(s)
Células Clonales/citología , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Macaca mulatta/inmunología , Animales , Células Clonales/inmunología
18.
Nat Immunol ; 19(8): 800-808, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30026479

RESUMEN

Natural killer (NK) cells are lymphocytes that contribute to the early immune responses to viruses. NK cells are innate immune cells that do not express rearranged antigen receptors but sense their environment via receptors for pro-inflammatory cytokines, as well as via germline-encoded activating receptors specific for danger or pathogen signals. A group of such activating receptors is stochastically expressed by certain subsets within the NK cell compartment. After engagement of the cognate viral ligand, these receptors contribute to the specific activation and 'preferential' population expansion of defined NK cell subsets, which partially recapitulate some features of adaptive lymphocytes. In this Review, we discuss the numerous modes for the specific recognition of viral antigens and peptides by NK cells and the implications of this for the composition of the NK cell repertoire as well as for the the selection of viral variants.


Asunto(s)
Antígenos Virales/inmunología , Células Asesinas Naturales/inmunología , Péptidos/inmunología , Receptores de Células Asesinas Naturales/inmunología , Virosis/inmunología , Animales , Variación Antigénica , Humanos , Inmunidad Innata , Ligandos
19.
Nat Immunol ; 19(5): 453-463, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632329

RESUMEN

Natural killer (NK) cells are innate lymphocytes that lack antigen-specific rearranged receptors, a hallmark of adaptive lymphocytes. In some people infected with human cytomegalovirus (HCMV), an NK cell subset expressing the activating receptor NKG2C undergoes clonal-like expansion that partially resembles anti-viral adaptive responses. However, the viral ligand that drives the activation and differentiation of adaptive NKG2C+ NK cells has remained unclear. Here we found that adaptive NKG2C+ NK cells differentially recognized distinct HCMV strains encoding variable UL40 peptides that, in combination with pro-inflammatory signals, controlled the population expansion and differentiation of adaptive NKG2C+ NK cells. Thus, we propose that polymorphic HCMV peptides contribute to shaping of the heterogeneity of adaptive NKG2C+ NK cell populations among HCMV-seropositive people.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Proteínas Virales/inmunología , Citomegalovirus/genética , Citomegalovirus/inmunología , Humanos , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...